matlab暗通道先验算法去雾

时间: 2024-03-20 16:37:49 浏览: 17
Matlab暗通道先验算法是一种用于去雾的图像处理算法。该算法基于一个观察:在自然场景中,远处的物体会受到大气散射的影响而变得模糊。暗通道先验算法利用了这个观察,通过分析图像的暗通道来估计图像中的散射和透射信息,从而实现去雾效果。 具体步骤如下: 1. 计算图像的暗通道:暗通道是指图像中每个像素点在所有颜色通道中最小值的图像。通过计算每个像素点的最小值,可以得到一个表示图像暗部区域的图像。 2. 估计大气:在暗通道图像中,亮度较高的区域往往对应着大气光的位置。通过选择暗通道图像中亮度最高的像素点,可以估计出大气光的强度。 3. 估计透射率:透射率表示了光线在大气中传播时的衰减程度。通过使用一个全局常数来估计透射率,可以得到一个初始的透射率图像。 4. 优化透射率:通过对初始透射率进行优化,可以得到更准确的透射率图像。这一步通常使用引导滤波等技术来实现。 5. 重建图像:最后,通过使用估计的透射率和大气光,可以对原始图像进行去雾处理,得到去雾后的图像。
相关问题

暗通道先验图像去雾算法——Matlab代码

这是一段用于暗通道先验图像去雾的Matlab代码。这个算法是根据论文《Single image haze removal using dark channel prior》实现的。 ``` close all; clear all; w0=0.65; % 乘积因子用来保留一些雾,1时完全去雾 t0=0.1; I=imread('1.png'); figure; subplot(221) imshow(I); title('原始图像'); [h,w,s]=size(I); min_I=zeros(h,w); %下面取得暗通道图像 for i=1:h for j=1:w dark_I(i,j)=min(I(i,j,:)); end end subplot(223) imshow(dark_I); title('dark channnel的图形'); Max_dark_channel=double(max(max(dark_I))); %天空亮度 dark_channel=double(dark_I); t=1-w0*(dark_channel/Max_dark_channel); %取得透射分布率图 subplot(224) T=uint8(t*255); imshow(T); title('透射率t的图形'); t=max(t,t0); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% I1=double(I); J(:,:,1) = uint8((I1(:,:,1) - (1-t)*Max_dark_channel)./t); J(:,:,2) = uint8((I1(:,:,2) - (1-t)*Max_dark_channel)./t); J(:,:,3) = uint8((I1(:,:,3) - (1-t)*Max_dark_channel)./t); subplot(222) imshow(J); title('去雾后的图像'); ``` 希望这个代码能对你有所帮助。

暗通道先验去雾算法matlab代码

以下是一个简单的基于 MATLAB 的暗通道先验去雾算法的实现代码: ```matlab % 读取原始图像 img = imread('foggy_image.jpg'); figure, imshow(img), title('Original Image'); % 转换为灰度图像 gray_img = rgb2gray(img); % 计算暗通道值 patch_size = 15; dark_channel = calc_dark_channel(gray_img, patch_size); % 估算全局大气光值 atmospheric_light = estimate_atmospheric_light(img, dark_channel); % 估算场景透射率 transmission = estimate_transmission(gray_img, atmospheric_light, dark_channel); % 去雾处理 dehazed_img = dehaze(img, transmission, atmospheric_light); figure, imshow(dehazed_img), title('Dehazed Image'); % 计算暗通道值 function dark_channel = calc_dark_channel(img, patch_size) % 对图像进行补边,以避免邻域边界问题 img = padarray(img, [patch_size, patch_size], 'symmetric'); % 计算每个像素的暗通道值 dark_channel = min(im2col(img, [patch_size, patch_size], 'sliding'), [], 1); % 将结果重塑为原始图像大小 dark_channel = reshape(dark_channel, size(img) - [patch_size, patch_size] + 1); end % 估算全局大气光值 function atmospheric_light = estimate_atmospheric_light(img, dark_channel) [rows, cols] = size(dark_channel); num_pixels = rows * cols; num_samples = floor(num_pixels * 0.001); [~, indices] = sort(dark_channel(:), 'descend'); top_indices = indices(1:num_samples); atmospheric_light = max(max(img(top_indices))); end % 估算场景透射率 function transmission = estimate_transmission(gray_img, atmospheric_light, dark_channel) % 估算场景透射率 transmission = 1 - 0.95 * (dark_channel ./ atmospheric_light); % 使用全局大气光值对结果进行归一化 transmission = transmission ./ max(transmission(:)); % 避免出现除零错误 transmission(transmission < 0.1) = 0.1; end % 去雾处理 function dehazed_img = dehaze(img, transmission, atmospheric_light) % 转换为浮点数类型 img = im2double(img); % 对每个通道进行去雾处理 for i = 1:3 channel = img(:, :, i); channel_transmission = repmat(transmission, [1, 1, 3]); channel_atmospheric_light = repmat(atmospheric_light, [size(img, 1), size(img, 2), 1]); dehazed_channel = (channel - channel_atmospheric_light) ./ channel_transmission + channel_atmospheric_light; % 将像素值限制在 0 到 1 之间 dehazed_channel(dehazed_channel < 0) = 0; dehazed_channel(dehazed_channel > 1) = 1; dehazed_img(:, :, i) = dehazed_channel; end end ``` 这段代码实现了暗通道先验去雾算法的基本步骤,可以对输入图像进行去雾处理。需要注意的是,该代码仅供参考,实际应用中可能需要进行更多的调整和优化。

相关推荐

最新推荐

recommend-type

起点小说解锁.js

起点小说解锁.js
recommend-type

299-煤炭大数据智能分析解决方案.pptx

299-煤炭大数据智能分析解决方案.pptx
recommend-type

299-教育行业信息化与数据平台建设分享.pptx

299-教育行业信息化与数据平台建设分享.pptx
recommend-type

RTL8188FU-Linux-v5.7.4.2-36687.20200602.tar(20765).gz

REALTEK 8188FTV 8188eus 8188etv linux驱动程序稳定版本, 支持AP,STA 以及AP+STA 共存模式。 稳定支持linux4.0以上内核。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

:YOLOv1目标检测算法:实时目标检测的先驱,开启计算机视觉新篇章

![:YOLOv1目标检测算法:实时目标检测的先驱,开启计算机视觉新篇章](https://img-blog.csdnimg.cn/img_convert/69b98e1a619b1bb3c59cf98f4e397cd2.png) # 1. 目标检测算法概述 目标检测算法是一种计算机视觉技术,用于识别和定位图像或视频中的对象。它在各种应用中至关重要,例如自动驾驶、视频监控和医疗诊断。 目标检测算法通常分为两类:两阶段算法和单阶段算法。两阶段算法,如 R-CNN 和 Fast R-CNN,首先生成候选区域,然后对每个区域进行分类和边界框回归。单阶段算法,如 YOLO 和 SSD,一次性执行检
recommend-type

ActionContext.getContext().get()代码含义

ActionContext.getContext().get() 是从当前请求的上下文对象中获取指定的属性值的代码。在ActionContext.getContext()方法的返回值上,调用get()方法可以获取当前请求中指定属性的值。 具体来说,ActionContext是Struts2框架中的一个类,它封装了当前请求的上下文信息。在这个上下文对象中,可以存储一些请求相关的属性值,比如请求参数、会话信息、请求头、应用程序上下文等等。调用ActionContext.getContext()方法可以获取当前请求的上下文对象,而调用get()方法可以获取指定属性的值。 例如,可以使用 Acti
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

:YOLO目标检测算法的挑战与机遇:数据质量、计算资源与算法优化,探索未来发展方向

![:YOLO目标检测算法的挑战与机遇:数据质量、计算资源与算法优化,探索未来发展方向](https://img-blog.csdnimg.cn/7e3d12895feb4651b9748135c91e0f1a.png?x-oss-process=image/watermark,type_ZHJvaWRzYW5zZmFsbGJhY2s,shadow_50,text_Q1NETiBA5rKJ6YaJ77yM5LqO6aOO5Lit,size_20,color_FFFFFF,t_70,g_se,x_16) # 1. YOLO目标检测算法简介 YOLO(You Only Look Once)是一种