基于lstm-crf的序列标注的模型代码
时间: 2024-01-25 16:04:33 浏览: 111
以下是使用TensorFlow实现基于LSTM-CRF的序列标注的模型代码示例:
```
import tensorflow as tf
from tensorflow.contrib.crf import crf_log_likelihood, viterbi_decode
class BiLSTM_CRF(object):
def __init__(self, num_chars, num_tags, embedding_dim, hidden_dim, batch_size=64, learning_rate=0.001):
self.num_chars = num_chars
self.num_tags = num_tags
self.embedding_dim = embedding_dim
self.hidden_dim = hidden_dim
self.batch_size = batch_size
self.learning_rate = learning_rate
self.inputs = tf.placeholder(tf.int32, shape=[None, None], name='inputs')
self.targets = tf.placeholder(tf.int32, shape=[None, None], name='targets')
self.seq_length = tf.placeholder(tf.int32, shape=[None], name='seq_length')
self._build_model()
self._build_loss()
self._build_optimizer()
self.sess = tf.Session()
self.sess.run(tf.global_variables_initializer())
def _build_model(self):
# 定义词嵌入层
self.word_embeddings = tf.Variable(tf.random_uniform([self.num_chars, self.embedding_dim], -1.0, 1.0), name='word_embeddings')
embeddings = tf.nn.embedding_lookup(self.word_embeddings, self.inputs)
# 定义双向LSTM层
cell_fw = tf.contrib.rnn.LSTMCell(self.hidden_dim)
cell_bw = tf.contrib.rnn.LSTMCell(self.hidden_dim)
(output_fw, output_bw), _ = tf.nn.bidirectional_dynamic_rnn(cell_fw, cell_bw, embeddings, dtype=tf.float32, sequence_length=self.seq_length)
output = tf.concat([output_fw, output_bw], axis=-1)
# 定义全连接层
W = tf.get_variable('W', shape=[2*self.hidden_dim, self.num_tags], initializer=tf.contrib.layers.xavier_initializer())
b = tf.get_variable('b', shape=[self.num_tags], initializer=tf.zeros_initializer())
output = tf.reshape(output, [-1, 2*self.hidden_dim])
logits = tf.matmul(output, W) + b
self.logits = tf.reshape(logits, [-1, tf.shape(self.inputs)[1], self.num_tags])
# 定义CRF层
self.transition_params = tf.get_variable('transition_params', shape=[self.num_tags, self.num_tags], initializer=tf.contrib.layers.xavier_initializer())
def _build_loss(self):
log_likelihood, self.transition_params = crf_log_likelihood(inputs=self.logits, tag_indices=self.targets, sequence_lengths=self.seq_length, transition_params=self.transition_params)
self.loss = tf.reduce_mean(-log_likelihood)
def _build_optimizer(self):
self.optimizer = tf.train.AdamOptimizer(self.learning_rate).minimize(self.loss)
def train(self, inputs, targets, seq_length):
feed_dict = {self.inputs: inputs, self.targets: targets, self.seq_length: seq_length}
_, loss = self.sess.run([self.optimizer, self.loss], feed_dict=feed_dict)
return loss
def predict(self, inputs, seq_length):
feed_dict = {self.inputs: inputs, self.seq_length: seq_length}
logits, transition_params = self.sess.run([self.logits, self.transition_params], feed_dict=feed_dict)
viterbi_sequences = []
for logit, length in zip(logits, seq_length):
logit = logit[:length]
viterbi_seq, _ = viterbi_decode(logit, transition_params)
viterbi_sequences.append(viterbi_seq)
return viterbi_sequences
```
这里实现了一个包含词嵌入、双向LSTM、全连接和CRF层的模型,并使用Adam优化器进行训练。在训练过程中,需要传入输入序列、目标序列和序列长度;在预测过程中,只需要传入输入序列和序列长度即可得到预测的标注序列。
阅读全文