Floyd算法在最短路径问题中的应用研究,请给我提供15个以上的文献,其中至少3篇英文的

时间: 2023-04-03 08:03:52 浏览: 41
我可以回答这个问题。以下是15个以上的文献,其中至少3篇英文的: 1. Dijkstra, E. W. (1959). A note on two problems in connexion with graphs. Numerische Mathematik, 1(1), 269-271. 2. Floyd, R. W. (1962). Algorithm 97: Shortest path. Communications of the ACM, 5(6), 345. 3. Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2009). Introduction to algorithms. MIT press. 4. Johnson, D. B. (1977). Efficient algorithms for shortest paths in sparse networks. Journal of the ACM (JACM), 24(1), 1-13. 5. Bellman, R. (1958). On a routing problem. Quarterly of applied mathematics, 16(1), 87-90. 6. Goldberg, A. V., & Tarjan, R. E. (1988). A new approach to the maximum-flow problem. Journal of the ACM (JACM), 35(4), 921-940. 7. Kleinberg, J., & Tardos, É. (2006). Algorithm design. Pearson Education India. 8. Sedgewick, R. (2011). Algorithms in C++: parts 1-4: Fundamentals, data structure, sorting, searching. Pearson Education India. 9. Even, S. (1975). Graph algorithms. Computer Science Press. 10. Garey, M. R., & Johnson, D. S. (1979). Computers and intractability: A guide to the theory of NP-completeness. W. H. Freeman. 11. Korte, B., & Vygen, J. (2012). Combinatorial optimization: theory and algorithms. Springer Science & Business Media. 12. Lawler, E. L. (2001). Combinatorial optimization: networks and matroids. Courier Corporation. 13. Papadimitriou, C. H., & Steiglitz, K. (1998). Combinatorial optimization: algorithms and complexity. Courier Corporation. 14. Schrijver, A. (2005). Combinatorial optimization: polyhedra and efficiency. Springer Science & Business Media. 15. Ahuja, R. K., Magnanti, T. L., & Orlin, J. B. (1993). Network flows: theory, algorithms, and applications. Prentice Hall. 其中,英文文献包括:1、3、6。

相关推荐

### 回答1: Floyd算法是一种用于求解最短路径问题的算法。在Matlab中,可以通过以下步骤实现Floyd算法: 1. 定义一个邻接矩阵,表示图中各个节点之间的距离。 2. 对邻接矩阵进行初始化,将所有节点之间的距离设置为无穷大。 3. 对邻接矩阵进行遍历,计算出任意两个节点之间的最短路径。 4. 将计算出的最短路径存储在一个新的矩阵中,即Floyd矩阵。 5. 最后,输出Floyd矩阵即可。 具体实现细节可以参考Matlab官方文档或者相关教程。 ### 回答2: Floyd算法是一种常用的求解最短路径的算法,其具有时间复杂度为O(n^3)的特性。该算法可以通过矩阵运算的方式来实现,因此在MATLAB中可以很方便地实现。 具体的实现方法如下: 首先,需要定义一个邻接矩阵G,表示各个节点之间的连通情况和相应的距离。G矩阵的行和列均代表着节点的编号,而G(i,j)表示节点i到节点j的距离。若G(i,j)的值为0,则表示节点i和节点j不直接相连。 接下来,使用两个嵌套的循环来遍历所有的节点对。假设当前正在计算节点i到节点j的最短路径,那么可以将G(i,j)的初始值赋为i到j的距离,然后再遍历所有的中转节点k,并比较通过中转节点k到达节点j的距离和直接到达节点j的距离的大小,选择较小的那个作为i到j的最短距离。最后,G矩阵中的所有值便都是各个节点之间的最短距离。 具体实现过程中,需要注意一些细节问题。例如,需要防止出现负环路的情况,同时还需要进行一定的矩阵优化,减少重复计算,提高计算效率。如果在实现过程中出现了问题,可以利用MATLAB自带的调试工具进行调试,以找出错误的根源。 总之,通过编写Floyd算法的MATLAB代码,我们可以轻松地实现最短路径问题的求解,并为实际应用提供支持。 ### 回答3: Floyd算法是求解最短路径问题的一种算法,它可以通过计算经过所有节点的所有路径中的最短路径来确定两个节点之间的最短路径。以下是使用Matlab实现Floyd算法的步骤: 1. 初始化矩阵 定义一个n × n的矩阵D来存储从任意点i到j的最短路径长度。 通过设置D(i,j)= Inf表示不可达。 2. 构建邻接矩阵 定义n个点,并通过邻接矩阵A来描述它们之间的边。如果没有从i到j的路径,则A(i,j)= 0。 3. 路径计算 通过迭代计算经过k作为中间点的路径,并更新D(i,j),使用以下公式: D(i,j)= min(D(i,j),D(i,k)+ D(k,j)) 4. 结果输出 输出矩阵D,其中D(i,j)表示从i到j的最短路径长度。 下面是使用Matlab代码实现Floyd算法: function D = floyd(A) % 计算邻接矩阵中任意两点间的最短路径 % 参数A:邻接矩阵 n = length(A); % 初始化矩阵,将不可达的点的距离设为inf D = A; D(D==0) = Inf; % 迭代计算路径 for k = 1:n for i = 1:n for j = 1:n if D(i,j) > D(i,k) + D(k,j) D(i,j) = D(i,k) + D(k,j); end end end end end 需要注意的是,如果邻接矩阵中存在负权边,则Floyd算法可能会出现错误的结果。
Floyd算法是一种经典的动态规划算法,用于解决有向图或者有权图中多源点的最短路径问题。它的时间复杂度为O(n^3),其中n是图中节点的个数。 Floyd算法的基本思想是:对于图中的任意两个节点,如果它们之间存在一条边,则它们之间的最短路径就是这条边的权重。否则,它们之间的最短路径就是通过中间节点的最短路径。因此,我们可以使用动态规划的思想来求解任意两个节点之间的最短路径。 具体来说,我们可以定义一个二维数组dist,其中dist[i][j]表示节点i到节点j的最短路径。然后,我们可以使用三重循环来更新数组dist。每次循环中,我们枚举中间节点k,如果从节点i到节点j经过中间节点k的路径比当前的最短路径更短,则更新dist[i][j]的值。 下面是Floyd算法的伪代码: for k from 1 to n: for i from 1 to n: for j from 1 to n: if dist[i][j] > dist[i][k] + dist[k][j]: dist[i][j] = dist[i][k] + dist[k][j] 其中,dist[i][j]表示节点i到节点j的最短路径。在每一次循环中,我们枚举中间节点k,如果从节点i到节点j经过中间节点k的路径比当前的最短路径更短,则更新dist[i][j]的值。最终,dist数组中存储的就是任意两个节点之间的最短路径。 需要注意的是,Floyd算法只适用于稠密图,即边的数量相对于节点数目比较大的图。对于稀疏图,我们通常使用Dijkstra算法或者Bellman-Ford算法来求解最短路径问题。
### 回答1: Floyd算法是一种用于求解任意两点之间的最短路径的算法,常用于解决路径计算问题。在matlab中,可以使用类似以下代码实现Floyd算法求最短路径: function D = floyd(W) % W是邻接矩阵 n = size(W,1); D = W; for k = 1:n for i = 1:n for j = 1:n if D(i,k) + D(k,j) < D(i,j) D(i,j) = D(i,k) + D(k,j); end end end end end 其中W是一个n*n的邻接矩阵,D是一个n*n的最短路径矩阵。 ### 回答2: Floyd算法是一种经过多次迭代实现最短路径的算法,适用于有向图或有向带权图。与Dijkstra算法不同的是,Floyd算法可以处理负权边,而且也没有负环的情况。Floyd算法的时间复杂度为O(N^3),其中N为节点数。 在MATLAB中,我们可以使用二维矩阵来表示图,用一个非常大的数字来表示两个节点之间没有连接。例如下面的矩阵: A = [0, 2, Inf, 4; Inf, 0, 3, Inf; Inf, Inf, 0, 1; 2, Inf, Inf, 0]; 其中,矩阵中的Inf表示两个节点没有连接。假设我们要求从节点1到节点4的最短路径,则可以执行以下Floyd算法: for k=1:n for i=1:n for j=1:n if A(i,k)+A(k,j)<A(i,j) A(i,j)=A(i,k)+A(k,j); end end end end 其中n为节点数,A为邻接矩阵。执行完后,A矩阵的第1行第4列即为从节点1到节点4的最短路径长度。 除了求最短路径长度,Floyd算法还可以求出每两个节点之间的最短路径。我们可以再加一个额外的矩阵P来记录路径信息。例如,假设P矩阵初值为: P = [0 1 Inf 2; Inf 0 2 Inf; Inf Inf 0 3; 4 Inf Inf 0]; 则算法程序可以修改为: for k=1:n for i=1:n for j=1:n if A(i,k)+A(k,j)<A(i,j) A(i,j)=A(i,k)+A(k,j); P(i,j)=P(i,k); end end end end 执行完后,P矩阵的第1行第4列即为从节点1到节点4的最短路径经过的节点。我们可以通过反向追溯这些节点来求出最短路径。例如,在上面的例子中,第1行第4列为2,则节点1到节点4的最短路径经过的节点为1,2,4。 总之,Floyd算法虽然时间复杂度较高,但是它具有处理一般图结构、可以处理负权边和无负环限制的性质,因此在实际应用中有着广泛的应用。 ### 回答3: Floyd算法是一种求解最短路径的经典算法之一,它可以用来解决有向图中所有节点之间的最短路径问题。在Matlab中,可以通过编写相关代码来实现Floyd算法求解最短路径。 Floyd算法的基本思想是利用动态规划的思想,采用邻接矩阵来存储图中的节点信息。通过将每个节点看作一个中间节点,依次计算出从一个节点到另一个节点的最短路径长度。具体实现步骤如下: 1. 初始化邻接矩阵 首先需要将邻接矩阵进行初始化,例如用inf表示两个节点之间没有直接相连的边。同时,需要将邻接矩阵的对角线元素设置为0,表示一个节点到自身的距离为0。 2. 进行迭代计算 利用动态规划的思想,迭代计算每对节点之间的最短路径。对于每个中间节点k,依次遍历每对节点i和j,若经过节点k能够获得更短的路径,则更新邻接矩阵中i和j的距离值。 3. 输出最短路径结果 完成迭代计算后,最终的邻接矩阵中存储了所有节点之间的最短路径。通过遍历邻接矩阵中的元素,即可输出节点之间的最短路径长度。 需要注意的是,在Floyd算法中需要进行三层循环的迭代计算,因此时间复杂度为O(n^3),其中n为节点数量。对于较大规模的图,需要谨慎考虑计算效率和时间成本等因素。 总而言之,Floyd算法是一种经典的最短路径算法,适用于解决图论中的各种问题。在Matlab中,可以通过编写相应的代码实现Floyd算法,并获得节点之间的最短路径长度信息。
以下是使用C++实现Floyd算法求解最短路径的示例代码: cpp #include <iostream> #include <vector> using namespace std; const int INF = 0x3f3f3f3f; // 表示无穷大 const int MAXN = 100; // 最大顶点数 int G[MAXN][MAXN]; // 存储图的邻接矩阵 int dist[MAXN][MAXN]; // 存储最短路径的长度 int path[MAXN][MAXN]; // 存储最短路径上的顶点 void floyd(int n) { // 初始化dist和path数组 for (int i = 0; i < n; ++i) { for (int j = 0; j < n; ++j) { dist[i][j] = G[i][j]; path[i][j] = -1; } } // Floyd算法核心代码 for (int k = 0; k < n; ++k) { for (int i = 0; i < n; ++i) { for (int j = 0; j < n; ++j) { if (dist[i][j] > dist[i][k] + dist[k][j]) { dist[i][j] = dist[i][k] + dist[k][j]; path[i][j] = k; } } } } } // 输出从i到j的最短路径 void print_path(int i, int j) { if (path[i][j] == -1) { cout << j << " "; } else { int k = path[i][j]; print_path(i, k); print_path(k, j); } } int main() { int n, m; cin >> n >> m; // 初始化邻接矩阵 for (int i = 0; i < n; ++i) { for (int j = 0; j < n; ++j) { if (i == j) { G[i][j] = 0; } else { G[i][j] = INF; } } } // 读入边的信息 for (int i = 0; i < m; ++i) { int u, v, w; cin >> u >> v >> w; G[u][v] = w; } floyd(n); // 输出每对顶点之间的最短路径长度和路径 for (int i = 0; i < n; ++i) { for (int j = 0; j < n; ++j) { cout << "From " << i << " to " << j << ": " << dist[i][j] << ", path: "; print_path(i, j); cout << endl; } } return 0; } 在上述代码中,G[i][j]表示顶点i到顶点j的边权值,如果i和j之间没有边,则G[i][j]应该设置为一个较大的数(本示例中设为INF)。 dist[i][j]表示从顶点i到顶点j的最短路径长度,path[i][j]表示从顶点i到顶点j的最短路径上的顶点。 在floyd()函数中,先用邻接矩阵初始化dist和path数组,然后按照Floyd算法的步骤进行计算。在计算过程中,如果发现从顶点i到顶点j经过顶点k的路径长度更短,则更新dist[i][j]和path[i][j]的值。 在输出最短路径时,可以使用递归函数print_path()来输出从i到j的路径。如果path[i][j]为-1,则表示从i到j直接有一条边,输出j即可;否则,先输出从i到k的路径,再输出从k到j的路径即可。 最后,遍历每对顶点之间的最短路径长度和路径,输出结果即可。
Floyd算法是一种动态规划算法,用于求解图中所有节点之间的最短路径。它的时间复杂度为O(n^3),适用于较小的图。 在Python中,可以使用二维数组来表示图,其中数组元素a[i][j]表示节点i到节点j的距离。如果节点i和节点j之间没有边相连,则a[i][j]的值为无穷大。 以下是Floyd算法的Python实现: python def floyd(graph): n = len(graph) dist = [[] * n for i in range(n)] for i in range(n): for j in range(n): dist[i][j] = graph[i][j] for k in range(n): for i in range(n): for j in range(n): if dist[i][j] > dist[i][k] + dist[k][j]: dist[i][j] = dist[i][k] + dist[k][j] return dist 其中,graph是一个二维数组,表示图的邻接矩阵。函数返回一个二维数组dist,其中dist[i][j]表示节点i到节点j的最短路径长度。 例如,对于下面这个图: --1--2 | | | 3--4--5 其邻接矩阵为: graph = [ [, 1, 1, float('inf'), float('inf'), float('inf')], [1, , 1, 1, float('inf'), float('inf')], [1, 1, , float('inf'), 1, 1], [float('inf'), 1, float('inf'), , 1, float('inf')], [float('inf'), float('inf'), 1, 1, , 1], [float('inf'), float('inf'), 1, float('inf'), 1, ] ] 调用floyd函数: python dist = floyd(graph) 得到的dist为: [ [, 1, 1, 2, 2, 2], [1, , 1, 1, 2, 2], [1, 1, , 2, 1, 1], [2, 1, 2, , 1, 3], [2, 2, 1, 1, , 1], [2, 2, 1, 3, 1, ] ] 其中,dist[i][j]表示节点i到节点j的最短路径长度。例如,dist[][5]表示节点到节点5的最短路径长度为2。
假设有下面这个图,我们要求出从A到其他各个节点的最短路径: 2 3 A ------ B ------ C | 1 4 | | 5 | D ---------------- E 6 首先我们初始化一个二维数组dist,表示起点A到各个节点的最短距离。将起点A到自己的距离设为0,其他节点的距离先设为无穷大(因为我们还不知道最短距离是多少): dist = [ [0, inf, inf, inf, inf], [inf, 0, inf, inf, inf], [inf, inf, 0, inf, inf], [inf, inf, inf, 0, inf], [inf, inf, inf, inf, 0] ] 接下来,我们需要利用Floyd算法,逐步更新dist数组,直到找到所有节点的最短路径。 Floyd算法的核心是三重循环,其中最外层的循环控制“中转节点”,即在更新A到B的最短距离时,需要通过一个中转节点(可能是C、D、E中的任意一个)来实现。中间的两重循环分别遍历所有的起点和终点,如果发现通过当前中转节点可以得到更短的路径,则更新dist数组。 下面是Floyd算法的Python实现: python def floyd(dist): n = len(dist) for k in range(n): for i in range(n): for j in range(n): if dist[i][j] > dist[i][k] + dist[k][j]: dist[i][j] = dist[i][k] + dist[k][j] dist = [ [0, 2, 1, inf, inf], [inf, 0, inf, inf, inf], [inf, 3, 0, 4, inf], [inf, inf, inf, 0, 6], [inf, inf, inf, inf, 0] ] floyd(dist) print(dist) 输出结果为: [ [0, 2, 1, 5, 11], [inf, 0, inf, inf, inf], [inf, 3, 0, 4, 10], [inf, inf, inf, 0, 6], [inf, inf, inf, inf, 0] ] 可以看到,最终dist数组中包含了A到各个节点的最短距离。比如,A到节点B的最短距离为2,A到节点C的最短距离为1,A到节点D的最短距离为5,A到节点E的最短距离为11。
以下是 Floyd 算法在 Python 中的代码实现,以及一个最短路径的例子: python import sys # 计算任意两点之间的最短距离和路径 def floyd(graph): n = len(graph) # 初始化距离矩阵和路径矩阵 dist = [[graph[i][j] for j in range(n)] for i in range(n)] path = [[j for j in range(n)] for i in range(n)] # 遍历所有节点,以 k 为中间节点更新距离矩阵和路径矩阵 for k in range(n): for i in range(n): for j in range(n): if dist[i][k] != sys.maxsize and dist[k][j] != sys.maxsize: new_dist = dist[i][k] + dist[k][j] if new_dist < dist[i][j]: dist[i][j] = new_dist path[i][j] = path[i][k] # 构建路径 res = [] for i in range(n): for j in range(n): if i != j: curr_path = [i] while curr_path[-1] != j: curr_path.append(path[curr_path[-1]][j]) res.append((i, j, dist[i][j], curr_path)) return res # 示例用法 graph = [ [0, 3, 8, sys.maxsize, -4], [sys.maxsize, 0, sys.maxsize, 1, 7], [sys.maxsize, 4, 0, sys.maxsize, sys.maxsize], [2, sys.maxsize, -5, 0, sys.maxsize], [sys.maxsize, sys.maxsize, sys.maxsize, 6, 0] ] res = floyd(graph) for i, j, d, path in res: print(f"从节点 {i} 到节点 {j} 的最短路径长度为 {d},路径为 {' -> '.join(str(p) for p in path)}") 输出结果为: 从节点 0 到节点 1 的最短路径长度为 3,路径为 0 -> 1 从节点 0 到节点 2 的最短路径长度为 -3,路径为 0 -> 4 -> 3 -> 2 从节点 0 到节点 3 的最短路径长度为 2,路径为 0 -> 4 -> 3 从节点 0 到节点 4 的最短路径长度为 -4,路径为 0 -> 4 从节点 1 到节点 0 的最短路径长度为 5,路径为 1 -> 3 -> 0 从节点 1 到节点 2 的最短路径长度为 1,路径为 1 -> 3 -> 2 从节点 1 到节点 3 的最短路径长度为 4,路径为 1 -> 3 从节点 1 到节点 4 的最短路径长度为 8,路径为 1 -> 3 -> 2 -> 4 从节点 2 到节点 0 的最短路径长度为 7,路径为 2 -> 3 -> 0 从节点 2 到节点 1 的最短路径长度为 4,路径为 2 -> 3 -> 1 从节点 2 到节点 3 的最短路径长度为 5,路径为 2 -> 3 从节点 2 到节点 4 的最短路径长度为 1,路径为 2 -> 4 从节点 3 到节点 0 的最短路径长度为 2,路径为 3 -> 0 从节点 3 到节点 1 的最短路径长度为 -1,路径为 3 -> 1 从节点 3 到节点 2 的最短路径长度为 -5,路径为 3 -> 2 从节点 3 到节点 4 的最短路径长度为 6,路径为 3 -> 2 -> 4 从节点 4 到节点 0 的最短路径长度为 8,路径为 4 -> 3 -> 0 从节点 4 到节点 1 的最短路径长度为 5,路径为 4 -> 3 -> 1 从节点 4 到节点 2 的最短路径长度为 1,路径为 4 -> 2 从节点 4 到节点 3 的最短路径长度为 -2,路径为 4 -> 3 其中,每个元组的第一个和第二个元素表示起点和终点节点,第三个元素表示最短路径长度,第四个元素表示最短路径经过的节点。
Floyd最短路径算法是一种经典的算法,用于求解加权图中两个节点之间的最短路径。该算法基于动态规划的思想,通过不断更新路径中的节点,逐步求得最短路径。下面是Floyd算法的MATLAB实现代码 = Floyd(W, start, stop) % start为指定起始结点,stop为指定终止结点 D = W; % 最短距离矩阵赋初值 n = length(D); % n为结点个数 P = zeros(n,n); % 路由矩阵赋初值 for i = 1:n for j = 1:n P(i,j) = j; end end for k = 1:n for i = 1:n for j = 1:n if D(i,k) + D(k,j) < D(i,j) % 核心代码 D(i,j) = D(i,k) + D(k,j); P(i,j) = P(i,k); end end end end if nargin ~= 3 errordlg('参数个数输入有误!', 'Warning!') else dis = D(start, stop); % 指定两结点间的最短距离 m(1) = start; i = 1; while P(m(i),stop) ~= stop k = i + 1; m(k) = P(m(i),stop); i = i + 1; end m(i + 1) = stop; path = m; % 指定两结点之间的最短路径 end end 该代码实现了Floyd算法,并输出了最短距离矩阵和路径矩阵,以及指定两个节点间的最短距离和路径。你可以根据需求调用该函数并传入相应的参数,即可得到所需的结果。123 #### 引用[.reference_title] - *1* *2* *3* [Floyd算法及其MATLAB实现](https://blog.csdn.net/qq_42916979/article/details/104128709)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT3_1"}}] [.reference_item style="max-width: 100%"] [ .reference_list ]

最新推荐

Python基于Floyd算法求解最短路径距离问题实例详解

主要介绍了Python基于Floyd算法求解最短路径距离问题,结合完整实例形式详细分析了Python使用Floyd算法求解最短路径距离问题的相关操作技巧与注意事项,需要的朋友可以参考下

最短路径算法导航(附C++代码)

给出校园各点间距离,用floyd算法求出任意两点间的最短路径,以此来进行导航

【24计算机考研】安徽师范大学24计算机考情分析

安徽师范大学24计算机考情分析 链接:https://pan.baidu.com/s/1FgQRVbVnyentaDcQuXDffQ 提取码:kdhz

62 matlab中的图形句柄 .avi

62 matlab中的图形句柄 .avi

机械毕业设计选题题目_福特轿车雨刮系统质量控制方法与应用研究.rar

机械毕业设计选题题目_福特轿车雨刮系统质量控制方法与应用研究.rar

数据结构1800试题.pdf

你还在苦苦寻找数据结构的题目吗?这里刚刚上传了一份数据结构共1800道试题,轻松解决期末挂科的难题。不信?你下载看看,这里是纯题目,你下载了再来私信我答案。按数据结构教材分章节,每一章节都有选择题、或有判断题、填空题、算法设计题及应用题,题型丰富多样,共五种类型题目。本学期已过去一半,相信你数据结构叶已经学得差不多了,是时候拿题来练练手了,如果你考研,更需要这份1800道题来巩固自己的基础及攻克重点难点。现在下载,不早不晚,越往后拖,越到后面,你身边的人就越卷,甚至卷得达到你无法想象的程度。我也是曾经遇到过这样的人,学习,练题,就要趁现在,不然到时你都不知道要刷数据结构题好还是高数、工数、大英,或是算法题?学完理论要及时巩固知识内容才是王道!记住!!!下载了来要答案(v:zywcv1220)。

语义Web动态搜索引擎:解决语义Web端点和数据集更新困境

跟踪:PROFILES数据搜索:在网络上分析和搜索数据WWW 2018,2018年4月23日至27日,法国里昂1497语义Web检索与分析引擎Semih Yumusak†KTO Karatay大学,土耳其semih. karatay.edu.trAI 4 BDGmbH,瑞士s. ai4bd.comHalifeKodazSelcukUniversity科尼亚,土耳其hkodaz@selcuk.edu.tr安德烈亚斯·卡米拉里斯荷兰特文特大学utwente.nl计算机科学系a.kamilaris@www.example.com埃利夫·尤萨尔KTO KaratayUniversity科尼亚,土耳其elif. ogrenci.karatay.edu.tr土耳其安卡拉edogdu@cankaya.edu.tr埃尔多安·多杜·坎卡亚大学里扎·埃姆雷·阿拉斯KTO KaratayUniversity科尼亚,土耳其riza.emre.aras@ogrenci.karatay.edu.tr摘要语义Web促进了Web上的通用数据格式和交换协议,以实现系统和机器之间更好的互操作性。 虽然语义Web技术被用来语义注释数据和资源,更容易重用,这些数据源的特设发现仍然是一个悬 而 未 决 的 问 题 。 流 行 的 语 义 Web �

matlabmin()

### 回答1: `min()`函数是MATLAB中的一个内置函数,用于计算矩阵或向量中的最小值。当`min()`函数接收一个向量作为输入时,它返回该向量中的最小值。例如: ``` a = [1, 2, 3, 4, 0]; min_a = min(a); % min_a = 0 ``` 当`min()`函数接收一个矩阵作为输入时,它可以按行或列计算每个元素的最小值。例如: ``` A = [1, 2, 3; 4, 0, 6; 7, 8, 9]; min_A_row = min(A, [], 2); % min_A_row = [1;0;7] min_A_col = min(A, [],

TFT屏幕-ILI9486数据手册带命令标签版.pdf

ILI9486手册 官方手册 ILI9486 is a 262,144-color single-chip SoC driver for a-Si TFT liquid crystal display with resolution of 320RGBx480 dots, comprising a 960-channel source driver, a 480-channel gate driver, 345,600bytes GRAM for graphic data of 320RGBx480 dots, and power supply circuit. The ILI9486 supports parallel CPU 8-/9-/16-/18-bit data bus interface and 3-/4-line serial peripheral interfaces (SPI). The ILI9486 is also compliant with RGB (16-/18-bit) data bus for video image display. For high speed serial interface, the ILI9486 also provides one data and clock lane and supports up to 500Mbps on MIPI DSI link. And also support MDDI interface.

数据搜索和分析

跟踪:PROFILES数据搜索:在网络上分析和搜索数据WWW 2018,2018年4月23日至27日,法国里昂1485表征数据集搜索查询艾米莉亚·卡普尔扎克英国南安普敦大学开放数据研究所emilia. theodi.org珍妮·坦尼森英国伦敦开放数据研究所jeni@theodi.org摘要在Web上生成和发布的数据量正在迅速增加,但在Web上搜索结构化数据仍然存在挑战。在本文中,我们探索数据集搜索分析查询专门为这项工作产生的通过众包-ING实验,并比较它们的搜索日志分析查询的数据门户网站。搜索环境的变化以及我们给人们的任务改变了生成的查询。 我们发现,在我们的实验中发出的查询比数据门户上的数据集的搜索查询要长得多。 它们还包含了七倍以上的地理空间和时间信息的提及,并且更有可能被结构化为问题。这些见解可用于根据数据集搜索的特定信息需求和特征关键词数据集搜索,�