在pytorch版本的deeplabv3plus加入SE注意力模块应该如何修改
时间: 2024-05-09 17:21:05 浏览: 160
要在PyTorch版本的DeepLabv3+中加入SE注意力模块,可以按照以下步骤进行修改:
1. 首先,在模型定义文件(如model.py)中导入SE注意力模块的定义:
```python
import torch
import torch.nn as nn
class SEModule(nn.Module):
def __init__(self, channels, reduction=16):
super(SEModule, self).__init__()
self.avg_pool = nn.AdaptiveAvgPool2d(1)
self.fc = nn.Sequential(
nn.Linear(channels, channels // reduction, bias=False),
nn.ReLU(inplace=True),
nn.Linear(channels // reduction, channels, bias=False),
nn.Sigmoid()
)
def forward(self, x):
b, c, _, _ = x.size()
y = self.avg_pool(x).view(b, c)
y = self.fc(y).view(b, c, 1, 1)
return x * y
```
2. 在DeepLabv3+的核心网络定义(如deeplabv3plus.py)中,将SE注意力模块加入到ASPP模块中的卷积层之后:
```python
class ASPPConv(nn.Sequential):
def __init__(self, in_channels, out_channels, dilation):
modules = [
nn.Conv2d(in_channels, out_channels, 3, padding=dilation, dilation=dilation, bias=False),
nn.BatchNorm2d(out_channels),
nn.ReLU(inplace=True),
SEModule(out_channels) # 加入SE注意力模块
]
super(ASPPConv, self).__init__(*modules)
```
3. 在核心网络定义的最后一层,也加入SE注意力模块:
```python
self.classifier = nn.Sequential(
nn.Conv2d(256 * (len(rate_sizes) + 1), 256, 1, bias=False),
nn.BatchNorm2d(256),
nn.ReLU(inplace=True),
SEModule(256), # 加入SE注意力模块
nn.Conv2d(256, num_classes, 1)
)
```
完成以上三个步骤后,就成功地在PyTorch版本的DeepLabv3+中加入了SE注意力模块。
阅读全文