ReliefF算法代码,并展示结果
时间: 2024-09-28 20:13:39 浏览: 55
ReliefF算法是一种特征选择方法,它通过迭代的方式评估每个特征对于样本分类的重要性。这个算法基于信息增益和距离的概念,旨在找出那些能够最好地区分正负类别的特征。以下是 ReliefF 算法的一个简单Python实现:
```python
import numpy as np
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
class ReliefF:
def __init__(self, n_features_to_select=10):
self.n_features_to_select = n_features_to_select
self.distance_metric = "euclidean" # 可选的距离度量,如“euclidean”或“manhattan”
def fit(self, X, y):
self.X_train, self.y_train = X, y
self.feature_importances_ = np.zeros(X.shape[1])
self.iterate()
def iterate(self):
for _ in range(self.n_features_to_select * len(self.X_train)):
sample = self.get_random_sample()
neighbor_classes = self.find_neighbors(sample)
self.update_feature_importance(sample, neighbor_classes)
def get_random_sample(self):
return np.random.choice(self.X_train, replace=True)
def find_neighbors(self, sample):
distances = [self.distance_metric(sample, x) for x in self.X_train]
indices = np.argsort(distances)[:len(distances)//2] + len(distances)//2
return [self.y_train[i] for i in indices]
def update_feature_importance(self, sample, classes):
weights = [self.compute_weight(sample, c) for c in classes]
delta_weights = [weights[0] - w for w in weights]
feature_importances = self.feature_importances_
feature_importances += delta_weights / (len(classes) * 2)
def compute_weight(self, sample, class_label):
# 计算正误样本的差异权重
pos_distance = min([self.distance_metric(sample, s) for s in self.X_train if self.y_train[sample_idx] != class_label])
neg_distance = max([self.distance_metric(sample, s) for s in self.X_train if self.y_train[sample_idx] == class_label])
return np.exp(-(pos_distance + neg_distance))
# 示例使用
iris = load_iris()
X_train, X_test, y_train, y_test = train_test_split(iris.data, iris.target, test_size=0.2, random_state=42)
relieff = ReliefF(n_features_to_select=2)
relieff.fit(X_train, y_train)
top_features = np.argsort(relieff.feature_importances_)[-2:][::-1]
print("Top 2 features based on ReliefF:")
for i, feature in enumerate(iris.feature_names[top_features]):
print(f"{i+1}. {feature} ({relieff.feature_importances_[top_features[i]]:.2f})")
阅读全文