升级import talib print(talib.__version__)
时间: 2023-12-11 12:02:16 浏览: 279
要升级 `talib` 库,你可以使用以下步骤:
1. 检查当前安装的 `talib` 版本:
```python
import talib
print(talib.__version__)
```
2. 使用适合你的包管理工具(如 `pip` 或 `conda`)执行升级命令。
使用 `pip` 升级 `talib`:
```shell
pip install --upgrade TA-Lib
```
使用 `conda` 升级 `talib`:
```shell
conda install --upgrade ta-lib
```
3. 完成升级后,再次检查 `talib` 版本以确认升级成功。
希望这个步骤能帮助你升级 `talib` 库!如果还有其他问题,请随时提问。
相关问题
import numpy as np import pandas as pd import talib def initialize(context): context.symbol = 'BTCUSDT' context.window_size = 5 context.deviation = 1 context.trade_size = 0.01 context.stop_loss = 0.05 context.take_profit = 0.1 schedule_function(rebalance, date_rules.every_day(), time_rules.market_open()) def rebalance(context, data): price = data.history(context.symbol, 'close', context.window_size + 1, '1d') signal = mean_reversion_signal(price, context.window_size, context.deviation) current_position = context.portfolio.positions[context.symbol].amount if signal[-1] == 1 and current_position <= 0: target_position_size = context.trade_size / data.current(context.symbol, 'close') order_target_percent(context.symbol, target_position_size) elif signal[-1] == -1 and current_position >= 0: order_target(context.symbol, 0) elif current_position > 0: current_price = data.current(context.symbol, 'close') stop_loss_price = current_price * (1 - context.stop_loss) take_profit_price = current_price * (1 + context.take_profit) if current_price <= stop_loss_price or current_price >= take_profit_price: order_target(context.symbol, 0) def moving_average(x, n): ma = talib.SMA(x, timeperiod=n) return ma def std_deviation(x, n): std = talib.STDDEV(x, timeperiod=n) return std def mean_reversion_signal(price, window_size, deviation): ma = moving_average(price, window_size) std = std_deviation(price, window_size) upper_band = ma + deviation * std lower_band = ma - deviation * std signal = np.zeros_like(price) signal[price > upper_band] = -1 # 卖出信号 signal[price < lower_band] = 1 # 买入信号 return signal ''' 运行回测 ''' start_date = pd.to_datetime('2019-01-01', utc=True) end_date = pd.to_datetime('2021-01-01', utc=True) results = run_algorithm( start=start_date, end=end_date, initialize=initialize, capital_base=10000, data_frequency='daily', bundle='binance' ) ''' 查看回测结果 ''' print(results.portfolio_value)格式错误
这段代码存在一些格式错误。具体来说,第一行和第二行之间需要有一个空行,否则会提示语法错误。另外,代码中的注释也需要使用 # 符号进行标记。
以下是修改后的代码:
```
import numpy as np
import pandas as pd
import talib
def initialize(context):
context.symbol = 'BTCUSDT'
context.window_size = 5
context.deviation = 1
context.trade_size = 0.01
context.stop_loss = 0.05
context.take_profit = 0.1
schedule_function(rebalance, date_rules.every_day(), time_rules.market_open())
def rebalance(context, data):
price = data.history(context.symbol, 'close', context.window_size + 1, '1d')
signal = mean_reversion_signal(price, context.window_size, context.deviation)
current_position = context.portfolio.positions[context.symbol].amount
if signal[-1] == 1 and current_position <= 0:
target_position_size = context.trade_size / data.current(context.symbol, 'close')
order_target_percent(context.symbol, target_position_size)
elif signal[-1] == -1 and current_position >= 0:
order_target(context.symbol, 0)
elif current_position > 0:
current_price = data.current(context.symbol, 'close')
stop_loss_price = current_price * (1 - context.stop_loss)
take_profit_price = current_price * (1 + context.take_profit)
if current_price <= stop_loss_price or current_price >= take_profit_price:
order_target(context.symbol, 0)
def moving_average(x, n):
ma = talib.SMA(x, timeperiod=n)
return ma
def std_deviation(x, n):
std = talib.STDDEV(x, timeperiod=n)
return std
def mean_reversion_signal(price, window_size, deviation):
ma = moving_average(price, window_size)
std = std_deviation(price, window_size)
upper_band = ma + deviation * std
lower_band = ma - deviation * std
signal = np.zeros_like(price)
signal[price > upper_band] = -1 # 卖出信号
signal[price < lower_band] = 1 # 买入信号
return signal
''' 运行回测 '''
start_date = pd.to_datetime('2019-01-01', utc=True)
end_date = pd.to_datetime('2021-01-01', utc=True)
results = run_algorithm(
start=start_date,
end=end_date,
initialize=initialize,
capital_base=10000,
data_frequency='daily',
bundle='binance'
)
''' 查看回测结果 '''
print(results.portfolio_value)
```
import pandas as pdimport numpy as npimport talibimport tushare as ts# 先写出回测框架class Backtest(): def __init__(self, data, init_balance): self.data = data self.init_balance = init_balance self.position = 0 self.balance = init_balance self.equity = 0 def update_balance(self, price): self.equity = self.position * price self.balance = self.balance + self.equity def run(self, strategy): for i in range(1, len(self.data)): signal = strategy.generate_signal(self.data.iloc[:i, :]) price = self.data.iloc[i, 0] # 按照信号来调整持仓 if signal == 1: self.position = np.floor(self.balance / price) # 买入所有可用资金 elif signal == -1: self.position = 0 # 卖出所有股票 self.update_balance(price) print("日期:", self.data.index[i], "价格:", price, "信号:", signal, "账户价值:", self.balance) # 输出最后的回测结果 print("回测结果: 最开始的账户余额为", self.init_balance, ",最终的账户余额为", self.balance, ",因此您的盈亏为", self.balance-self.init_balance)# 再写出策略类class MACD_Strategy(): def __init__(self, fast_period, slow_period, signal_period): self.fast_period = fast_period self.slow_period = slow_period self.signal_period = signal_period def generate_signal(self, data): macd, signal, hist = talib.MACD(data["close"], fastperiod=self.fast_period, slowperiod=self.slow_period, signalperiod=self.signal_period) if hist[-1] > 0 and hist[-2] < 0: return 1 # 金叉,买入 elif hist[-1] < 0 and hist[-2] > 0: return -1 # 死叉,卖出 else: return 0 # 无操作# 最后的主程序if __name__ == "__main__": # 下载数据 data = ts.get_hist_data("600000", start="2020-01-01", end="2021-01-01") data = data.sort_index() # 按日期排序 data = data.loc[:, ["open", "high", "close", "low", "volume"]] # 只保留这五列 data.index = pd.to_datetime(data.index) # 初始化回测 backtest = Backtest(data, init_balance=100000) # 初始化策略 strategy = MACD_Strategy(fast_period=12, slow_period=26, signal_period=9) # 运行回测 backtest.run(strategy)
这是一段Python代码,用于导入Pandas、Numpy、Talib以及Tushare这几个Python库。Pandas和Numpy是用于数据处理的库,Talib是用于技术指标计算的库,Tushare是用于获取股市数据的库。
阅读全文