java实现cholesky分解求逆
时间: 2023-09-19 20:05:05 浏览: 98
function-L=cholesky(A).zip_Cholesky 求逆_cholesky_cholesky 逆矩阵_mat
以下是Java实现Cholesky分解求逆的代码:
```
public class CholeskyInverse {
public static void main(String[] args) {
double[][] A = {{4, 2, 2}, {2, 5, 4}, {2, 4, 11}}; //待求逆矩阵
double[][] AInv = choleskyInverse(A); //调用choleskyInverse方法求逆矩阵
printMatrix(AInv); //输出逆矩阵
}
public static double[][] choleskyInverse(double[][] A) {
int n = A.length;
double[][] L = choleskyDecomposition(A);
double[][] LInv = inverseLowerTriangle(L);
double[][] AInv = multiply(transpose(LInv), LInv);
return AInv;
}
public static double[][] choleskyDecomposition(double[][] A) {
int n = A.length;
double[][] L = new double[n][n];
for (int i = 0; i < n; i++) {
for (int j = 0; j < (i + 1); j++) {
double s = 0;
for (int k = 0; k < j; k++) {
s += L[i][k] * L[j][k];
}
if (i == j) {
L[i][j] = Math.sqrt(A[i][i] - s);
} else {
L[i][j] = (1.0 / L[j][j] * (A[i][j] - s));
}
}
}
return L;
}
public static double[][] inverseLowerTriangle(double[][] L) {
int n = L.length;
double[][] LInv = new double[n][n];
for (int i = 0; i < n; i++) {
LInv[i][i] = 1.0 / L[i][i];
for (int j = 0; j < i; j++) {
double s = 0;
for (int k = j; k < i; k++) {
s += L[i][k] * LInv[k][j];
}
LInv[i][j] = -1.0 / L[i][i] * s;
}
}
return LInv;
}
public static double[][] multiply(double[][] A, double[][] B) {
int m = A.length;
int n = B[0].length;
double[][] C = new double[m][n];
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
for (int k = 0; k < B.length; k++) {
C[i][j] += A[i][k] * B[k][j];
}
}
}
return C;
}
public static double[][] transpose(double[][] A) {
int m = A.length;
int n = A[0].length;
double[][] B = new double[n][m];
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
B[j][i] = A[i][j];
}
}
return B;
}
public static void printMatrix(double[][] A) {
int m = A.length;
int n = A[0].length;
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
System.out.print(A[i][j] + "\t");
}
System.out.println();
}
}
}
```
在这个代码中,我们首先定义了一个待求逆矩阵A,然后调用choleskyInverse方法求解逆矩阵。在choleskyInverse方法中,我们先调用choleskyDecomposition方法求解A的Cholesky分解,然后调用inverseLowerTriangle方法求解下三角矩阵L的逆矩阵,最后调用multiply方法计算L的转置与L的乘积,得到A的逆矩阵。最后,我们输出A的逆矩阵,以验证结果是否正确。
阅读全文