paddleocr训练HWDB完整代码
时间: 2023-07-03 11:29:21 浏览: 90
以下是使用PaddleOCR训练HWDB的完整代码:
```python
import os
import paddle
import paddlehub as hub
from paddleocr import PaddleOCR, draw_ocr
# 定义数据集路径
data_dir = "/path/to/HWDB"
# 定义模型保存路径
model_dir = "/path/to/save/model"
# 加载PaddleOCR模型
ocr = PaddleOCR(lang='ch')
# 加载预训练的检测模型
det = hub.Module(name='chinese_ocr_db_crnn_server')
# 定义训练器
trainer = hub.Trainer()
# 定义数据集
train_dataset = hub.datasets.OCRDataset(data_dir=data_dir, mode='train')
val_dataset = hub.datasets.OCRDataset(data_dir=data_dir, mode='val')
# 定义数据增强方法
transforms = hub.transforms.Compose(
[hub.transforms.Resize(target_size=(32, 280)),
hub.transforms.Normalize(mean=[0.5], std=[0.5])])
# 定义训练集和验证集的loader
train_loader = paddle.io.DataLoader(
train_dataset,
batch_size=64,
shuffle=True,
num_workers=0,
collate_fn=hub.datasets.collate_fn)
val_loader = paddle.io.DataLoader(
val_dataset,
batch_size=64,
shuffle=True,
num_workers=0,
collate_fn=hub.datasets.collate_fn)
# 定义模型
model = hub.Module(name='chinese_ocr_db_crnn_server')
# 定义优化器
optimizer = paddle.optimizer.Adam(learning_rate=0.001, parameters=model.parameters())
# 定义损失函数
loss_fn = paddle.nn.CTCLoss(blank=0, reduction='mean')
# 定义评价指标
metric = hub.metrics.Accuracy()
# 训练模型
trainer.train(model=model,
optimizer=optimizer,
loss_fn=loss_fn,
train_dataset=train_dataset,
eval_dataset=val_dataset,
epochs=100,
batch_size=64,
save_dir=model_dir,
save_freq=1,
verbose=True,
transforms=transforms,
train_loader=train_loader,
val_loader=val_loader,
metric=metric)
```
需要注意的是,训练HWDB需要准备好HWDB的数据集,并将其存放在`data_dir`指定的路径下。同时,训练过程中需要使用到PaddleOCR和PaddleHub的相关模型和工具,需要提前安装好相应的依赖。
阅读全文