pycharm中的sklearn 包dataset
时间: 2024-03-22 20:31:47 浏览: 130
PyCharm本身并没有提供sklearn包的数据集,但是你可以通过以下代码在PyCharm中获取和使用sklearn中的数据集:
```
from sklearn.datasets import load_iris
iris = load_iris()
X = iris.data
y = iris.target
```
这个例子使用了sklearn中的经典数据集iris。你可以通过调用load_iris函数来获取这个数据集,然后将数据集中的数据和标签分别赋值给X和y变量。这里的X和y可以用于训练和测试机器学习模型。
你也可以通过其他类似的函数来获取sklearn中的其他数据集,例如load_digits函数可以获取手写数字数据集。
相关问题
pycharm实现利用sklearn的决策树函数实现分类问题的预测
PyCharm是一款强大的Python集成开发环境,它可以帮助你在其中方便地使用scikit-learn库来构建决策树模型进行分类任务。以下是简单的步骤:
1. **安装依赖**:首先,确保已经安装了`pycharm`, `numpy`, `pandas`, 和 `scikit-learn`。如果没有安装,可以在PyCharm的终端或者命令行里通过`pip install`命令来安装。
2. **导入所需的库**:
```python
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import accuracy_score
```
3. **数据预处理**:
- 加载数据集,例如从CSV文件、数据库或其他源加载。可以使用pandas的`read_csv()`函数读取CSV文件。
- 将数据划分为特征(X)和目标变量(y)。
```python
data = pd.read_csv('your_dataset.csv')
X = data.drop('target_column', axis=1)
y = data['target_column']
```
4. **划分训练集和测试集**:
```python
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
```
5. **创建并训练决策树模型**:
```python
model = DecisionTreeClassifier()
model.fit(X_train, y_train)
```
6. **进行预测**:
```python
predictions = model.predict(X_test)
```
7. **评估性能**:
使用`accuracy_score`计算模型在测试集上的准确率:
```python
accuracy = accuracy_score(y_test, predictions)
print("Accuracy:", accuracy)
```
8. **保存和使用模型**:
如果需要长期使用,可以将模型序列化存储起来:
```python
from sklearn.externals import joblib
joblib.dump(model, 'tree_model.pkl')
```
预测新数据时,可以读取模型进行预测。
修改一下这段代码在pycharm中的实现,import pandas as pd import numpy as np from sklearn.model_selection import train_test_split import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim #from torchvision import datasets,transforms import torch.utils.data as data #from torch .nn:utils import weight_norm import matplotlib.pyplot as plt from sklearn.metrics import precision_score from sklearn.metrics import recall_score from sklearn.metrics import f1_score from sklearn.metrics import cohen_kappa_score data_ = pd.read_csv(open(r"C:\Users\zhangjinyue\Desktop\rice.csv"),header=None) data_ = np.array(data_).astype('float64') train_data =data_[:,:520] train_Data =np.array(train_data).astype('float64') train_labels=data_[:,520] train_labels=np.array(train_data).astype('float64') train_data,train_data,train_labels,train_labels=train_test_split(train_data,train_labels,test_size=0.33333) train_data=torch.Tensor(train_data) train_data=torch.LongTensor(train_labels) train_data=train_data.reshape(-1,1,20,26) train_data=torch.Tensor(train_data) train_data=torch.LongTensor(train_labels) train_data=train_data.reshape(-1,1,20,26) start_epoch=1 num_epoch=1 BATCH_SIZE=70 Ir=0.001 classes=('0','1','2','3','4','5') device=torch.device("cuda"if torch.cuda.is_available()else"cpu") torch.backends.cudnn.benchmark=True best_acc=0.0 train_dataset=data.TensorDataset(train_data,train_labels) test_dataset=data.TensorDataset(train_data,train_labels) train_loader=torch.utills.data.DataLoader(dtaset=train_dataset,batch_size=BATCH_SIZE,shuffle=True) test_loader=torch.utills.data.DataLoader(dtaset=train_dataset,batch_size=BATCH_SIZE,shuffle=True)
修改后的代码如下所示:
```python
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import torch.utils.data as data
import matplotlib.pyplot as plt
from sklearn.metrics import precision_score, recall_score, f1_score, cohen_kappa_score
data_ = pd.read_csv(r"C:\Users\zhangjinyue\Desktop\rice.csv", header=None)
data_ = np.array(data_).astype('float64')
train_data = data_[:, :520]
train_labels = data_[:, 520]
train_data, _, train_labels, _ = train_test_split(train_data, train_labels, test_size=0.33333)
train_data = torch.Tensor(train_data)
train_labels = torch.LongTensor(train_labels)
train_data = train_data.reshape(-1, 1, 20, 26)
start_epoch = 1
num_epoch = 1
BATCH_SIZE = 70
Ir = 0.001
classes = ('0', '1', '2', '3', '4', '5')
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
torch.backends.cudnn.benchmark = True
best_acc = 0.0
train_dataset = data.TensorDataset(train_data, train_labels)
test_dataset = data.TensorDataset(train_data, train_labels)
train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=BATCH_SIZE, shuffle=True)
test_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=BATCH_SIZE, shuffle=True)
```
请注意,我做了以下修改:
1. 移除了不需要的导入语句。
2. 修复了变量名拼写错误。
3. 移除了重复的代码行。
4. 修正了 `torch.utils.data.DataLoader` 的拼写错误。
5. 修正了数据集分割时的变量名错误。
请根据你的实际需求进一步调整代码。
阅读全文