python dlib安装

时间: 2023-09-02 09:11:04 浏览: 34
dlib是一个用于人脸关键点检测的Python库,但由于其是使用C编写的(或需要C编译),在安装时可能会遇到各种问题。根据引用和引用的描述,总结了一种安装dlib的方法。 方法一是使用Anaconda进行安装。你可以通过在Anaconda环境下执行相应的安装命令来安装dlib。具体步骤如下: 1. 打开Anaconda Prompt或终端。 2. 输入以下命令来安装dlib: ``` conda install -c conda-forge dlib ``` 这将从conda-forge渠道安装dlib库。 另外,引用提到了使用pip安装dlib的方法,但需要下载相应的文件。你可以在github上找到dlib的安装文件,根据你的Python版本选择对应的文件进行安装。具体步骤如下: 1. 在所在文件夹打开终端。 2. 执行以下命令安装cmake: ``` pip install cmake ``` 3. 执行以下命令安装dlib(假设你的Python版本是3.7): ``` pip install dlib-19.19.0-cp37-cp37m-win_amd64.whl ``` 如果你的Python版本是3.8,可以使用对应的安装文件进行安装。 以上就是安装dlib库的两种方法。希望对你有帮助。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *3* [dlib 安装教程(三种方法)](https://blog.csdn.net/qq_43466323/article/details/120855699)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] - *2* [dlib安装教程,安装出错的点进来](https://blog.csdn.net/bigData1994pb/article/details/124021101)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]

相关推荐

安装Python库dlib可以按照以下步骤进行: 1. 首先,确保你已经安装了Python,可以在命令行窗口中输入python --version来检查Python的版本。 2. 下载适用于你的Python版本的dlib的whl文件。根据引用中的信息,dlib-19.19.0-cp38-cp38-win_amd64.whl适用于Python 3.8版本。你可以在dlib的官方网站或者其他可信的源中下载该whl文件。 3. 打开命令行窗口,并进入你下载的whl文件所在的目录。 4. 运行以下命令来安装dlib库:pip install dlib-19.19.0-cp38-cp38-win_amd64.whl。请注意,这里的whl文件名可能与你下载的实际文件名略有不同,根据你下载的文件来进行对应。 5. 等待安装完成。根据引用中的信息,安装dlib库可能需要一些时间。请耐心等待直到安装成功,并在命令行窗口显示"successful"。 这样,你就成功安装了Python库dlib。你可以在你的Python脚本中导入dlib并开始使用它了。123 #### 引用[.reference_title] - *1* *2* [Python之dlib库的简介、安装(无需下载VS)](https://blog.csdn.net/m0_46328473/article/details/122743343)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] - *3* [python如何安装Dlib库(超简单的方法,亲测有效)](https://blog.csdn.net/qq_42839007/article/details/104015954)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
对于Python中的dlib人脸识别,您可以按照以下步骤来实现: 1. 安装dlib库:在终端中运行以下命令来安装dlib库: pip install dlib 2. 下载dlib预训练模型:在dlib官方网站上下载所需的预训练模型。常用的模型是基于ResNet的人脸识别模型,可以从以下链接下载: http://dlib.net/files/dlib_face_recognition_resnet_model_v1.dat.bz2 http://dlib.net/files/shape_predictor_68_face_landmarks.dat.bz2 下载后,解压缩文件并将其保存到您的项目目录中。 3. 导入必要的库:在Python代码中导入dlib和OpenCV库。 python import dlib import cv2 4. 加载预训练模型:使用dlib库中的face_recognition_model_v1函数加载预训练模型。 python face_detector = dlib.get_frontal_face_detector() shape_predictor = dlib.shape_predictor("shape_predictor_68_face_landmarks.dat") face_recognizer = dlib.face_recognition_model_v1("dlib_face_recognition_resnet_model_v1.dat") 5. 识别人脸:使用OpenCV读取图像,并在图像中检测人脸。 python image = cv2.imread("image.jpg") gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) faces = face_detector(gray) 6. 提取面部特征:对于每个检测到的人脸,使用shape_predictor函数获取面部特征点。 python for face in faces: landmarks = shape_predictor(gray, face) face_descriptor = face_recognizer.compute_face_descriptor(gray, landmarks) 7. 进行人脸匹配:使用face_descriptor计算两个人脸之间的相似度,以进行人脸匹配。 python # 将face_descriptor保存到列表中,用于之后的匹配 face_descriptors.append(face_descriptor) # 在进行人脸匹配时,可以使用欧氏距离或者余弦相似度等方式计算两个人脸之间的相似度 distance = np.linalg.norm(face_descriptor1 - face_descriptor2) similarity = 1 / (1 + distance) 以上是使用dlib库进行人脸识别的基本步骤。请确保您已安装所需的库并使用正确的模型文件路径。此外,还可以根据需要进行更多的细化和优化。

最新推荐

Win10环境python3.7安装dlib模块趟过的坑

主要介绍了Win10环境python3.7安装dlib模块趟过的坑,本文图文并茂给大家介绍的非常详细,具有一定的参考借鉴价值,需要的朋友可以参考下

超声波雷达驱动(Elmos524.03&amp;Elmos524.09)

超声波雷达驱动(Elmos524.03&Elmos524.09)

ROSE: 亚马逊产品搜索的强大缓存

89→ROSE:用于亚马逊产品搜索的强大缓存Chen Luo,Vihan Lakshman,Anshumali Shrivastava,Tianyu Cao,Sreyashi Nag,Rahul Goutam,Hanqing Lu,Yiwei Song,Bing Yin亚马逊搜索美国加利福尼亚州帕洛阿尔托摘要像Amazon Search这样的产品搜索引擎通常使用缓存来改善客户用户体验;缓存可以改善系统的延迟和搜索质量。但是,随着搜索流量的增加,高速缓存不断增长的大小可能会降低整体系统性能。此外,在现实世界的产品搜索查询中广泛存在的拼写错误、拼写错误和冗余会导致不必要的缓存未命中,从而降低缓存 在本文中,我们介绍了ROSE,一个RO布S t缓存E,一个系统,是宽容的拼写错误和错别字,同时保留传统的缓存查找成本。ROSE的核心组件是一个随机的客户查询ROSE查询重写大多数交通很少流量30X倍玫瑰深度学习模型客户查询ROSE缩短响应时间散列模式,使ROSE能够索引和检

java中mysql的update

Java中MySQL的update可以通过JDBC实现。具体步骤如下: 1. 导入JDBC驱动包,连接MySQL数据库。 2. 创建Statement对象。 3. 编写SQL语句,使用update关键字更新表中的数据。 4. 执行SQL语句,更新数据。 5. 关闭Statement对象和数据库连接。 以下是一个Java程序示例,用于更新MySQL表中的数据: ```java import java.sql.*; public class UpdateExample { public static void main(String[] args) { String

JavaFX教程-UI控件

JavaFX教程——UI控件包括:标签、按钮、复选框、选择框、文本字段、密码字段、选择器等

社交网络中的信息完整性保护

141社交网络中的信息完整性保护摘要路易斯·加西亚-普埃约Facebook美国门洛帕克lgp@fb.com贝尔纳多·桑塔纳·施瓦茨Facebook美国门洛帕克bsantana@fb.com萨曼莎·格思里Facebook美国门洛帕克samguthrie@fb.com徐宝轩Facebook美国门洛帕克baoxuanxu@fb.com信息渠道。这些网站促进了分发,Facebook和Twitter等社交媒体平台在过去十年中受益于大规模采用,反过来又助长了传播有害内容的可能性,包括虚假和误导性信息。这些内容中的一些通过用户操作(例如共享)获得大规模分发,以至于内容移除或分发减少并不总是阻止其病毒式传播。同时,社交媒体平台实施解决方案以保持其完整性的努力通常是不透明的,导致用户不知道网站上发生的任何完整性干预。在本文中,我们提出了在Facebook News Feed中的内容共享操作中添加现在可见的摩擦机制的基本原理,其设计和实现挑战,以�

fluent-ffmpeg转流jsmpeg

以下是使用fluent-ffmpeg和jsmpeg将rtsp流转换为websocket流的示例代码: ```javascript const http = require('http'); const WebSocket = require('ws'); const ffmpeg = require('fluent-ffmpeg'); const server = http.createServer(); const wss = new WebSocket.Server({ server }); wss.on('connection', (ws) => { const ffmpegS

Python单选题库(2).docx

Python单选题库(2) Python单选题库(2)全文共19页,当前为第1页。Python单选题库(2)全文共19页,当前为第1页。Python单选题库 Python单选题库(2)全文共19页,当前为第1页。 Python单选题库(2)全文共19页,当前为第1页。 Python单选题库 一、python语法基础 1、Python 3.x 版本的保留字总数是 A.27 B.29 C.33 D.16 2.以下选项中,不是Python 语言保留字的是 A while B pass C do D except 3.关于Python 程序格式框架,以下选项中描述错误的是 A Python 语言不采用严格的"缩进"来表明程序的格式框架 B Python 单层缩进代码属于之前最邻近的一行非缩进代码,多层缩进代码根据缩进关系决定所属范围 C Python 语言的缩进可以采用Tab 键实现 D 判断、循环、函数等语法形式能够通过缩进包含一批Python 代码,进而表达对应的语义 4.下列选项中不符合Python语言变量命名规则的是 A TempStr B I C 3_1 D _AI 5.以下选项中

利用脑信号提高阅读理解的信息检索模型探索

380∗→利用脑信号更好地理解人类阅读理解叶紫怡1、谢晓辉1、刘益群1、王志宏1、陈雪松1、张敏1、马少平11北京国家研究中心人工智能研究所计算机科学与技术系清华大学信息科学与技术学院,中国北京yeziyi1998@gmail.com,xiexh_thu@163.com,yiqunliu@tsinghua.edu.cn,wangzhh629@mail.tsinghua.edu.cn,,chenxuesong1128@163.com,z-m@tsinghua.edu.cn, msp@tsinghua.edu.cn摘要阅读理解是一个复杂的认知过程,涉及到人脑的多种活动。然而,人们对阅读理解过程中大脑的活动以及这些认知活动如何影响信息提取过程知之甚少此外,随着脑成像技术(如脑电图(EEG))的进步,可以几乎实时地收集大脑信号,并探索是否可以将其用作反馈,以促进信息获取性能。在本文中,我们精心设计了一个基于实验室的用户研究,以调查在阅读理解过程中的大脑活动。我们的研究结果表明,不同类型�

结构体指针强制类型转换是什么意思?

结构体指针强制类型转换是指将一个结构体指针强制转换为另一个结构体指针类型,以便对其进行操作。这种转换可能会导致一些错误,因为结构体的数据成员在内存中的重新分配可能会导致内存对齐问题。下面是一个示例代码,演示了如何进行结构体指针强制类型转换: ```c struct person { char name[20]; int age; }; struct student { char name[20]; int age; int grade; }; int main() { struct person p = {"Tom", 20}; s