用CNN和领域自适应进行样本迁移pytorch
时间: 2023-07-20 10:38:58 浏览: 171
样本迁移是指在源域和目标域之间进行数据转移的过程,其中CNN和领域自适应是常用的方法之一。下面是一个使用PyTorch实现的样本迁移的示例代码:
```python
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
import numpy as np
from torchvision import datasets, transforms
# 定义源域和目标域的数据集
source_dataset = datasets.MNIST(
'./data', train=True, download=True,
transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])
)
target_dataset = datasets.USPS(
'./data', train=True, download=True,
transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.5,), (0.5,))
])
)
# 定义卷积神经网络(CNN)模型
class CNNModel(nn.Module):
def __init__(self):
super(CNNModel, self).__init__()
self.conv1 = nn.Conv2d(1, 20, kernel_size=5)
self.conv2 = nn.Conv2d(20, 50, kernel_size=5)
self.fc1 = nn.Linear(4*4*50, 500)
self.fc2 = nn.Linear(500, 10)
def forward(self, x):
x = F.relu(self.conv1(x))
x = F.max_pool2d(x, 2)
x = F.relu(self.conv2(x))
x = F.max_pool2d(x, 2)
x = x.view(-1, 4*4*50)
x = F.relu(self.fc1(x))
x = self.fc2(x)
return x
# 定义领域自适应(DA)模型
class DAModel(nn.Module):
def __init__(self):
super(DAModel, self).__init__()
self.fc1 = nn.Linear(500, 500)
self.fc2 = nn.Linear(500, 2)
def forward(self, x):
x = F.relu(self.fc1(x))
x = self.fc2(x)
return x
# 定义源域和目标域的数据加载器
source_loader = torch.utils.data.DataLoader(
source_dataset, batch_size=64, shuffle=True
)
target_loader = torch.utils.data.DataLoader(
target_dataset, batch_size=64, shuffle=True
)
# 定义CNN和DA的优化器和损失函数
cnn_model = CNNModel()
da_model = DAModel()
cnn_optimizer = optim.SGD(cnn_model.parameters(), lr=0.01, momentum=0.5)
da_optimizer = optim.SGD(da_model.parameters(), lr=0.01, momentum=0.5)
criterion = nn.CrossEntropyLoss()
# 训练CNN和DA模型
for epoch in range(10):
for i, (source_data, source_target) in enumerate(source_loader):
target_data, _ = iter(target_loader).next()
cnn_optimizer.zero_grad()
da_optimizer.zero_grad()
source_output = cnn_model(source_data)
source_loss = criterion(source_output, source_target)
target_output = cnn_model(target_data)
da_input = target_output.detach()
da_output = da_model(da_input)
domain_target = torch.ones(target_output.size(0)).long()
domain_target = domain_target.cuda() if torch.cuda.is_available() else domain_target
domain_loss = criterion(da_output, domain_target)
loss = source_loss + domain_loss
loss.backward()
cnn_optimizer.step()
da_optimizer.step()
print('Epoch: {}, Loss: {:.4f}'.format(epoch+1, loss.item()))
```
在这个示例中,我们使用了一个CNN模型作为源域和目标域之间数据的特征提取器,然后使用一个DA模型来适应不同的数据分布。在训练过程中,我们通过最小化源域和目标域之间的分类误差和领域误差来更新CNN和DA模型的参数。最终,我们可以使用训练好的CNN模型在目标域上进行分类预测。
阅读全文