function [one_feat_sps, weight_pool_info]=do_sp_pooling(one_feat_img, one_sp_info) img_size=size(one_feat_img); num_units=img_size(1)*img_size(2); dim=img_size(3); one_feat_img=reshape(one_feat_img, [num_units dim]); img_size_org=one_sp_info.img_size; pixel_ind_map=reshape([1: num_units], [img_size(1) img_size(2)]); pixel_ind_map_org=imresize(pixel_ind_map, img_size_org, 'nearest'); pixel_ind_sps=one_sp_info.pixel_ind_sps; num_sp=numel(pixel_ind_sps); weight_pool_info=zeros([num_sp, num_units], 'like', one_feat_img); for idx_sp=1:num_sp pixel_ind_sp_one=pixel_ind_sps{idx_sp}; ind_pixels_in_map=pixel_ind_map_org(pixel_ind_sp_one); [ind_units,~,uniqueIndex] = unique(ind_pixels_in_map); frequency = accumarray(uniqueIndex(:),1)./numel(ind_pixels_in_map); frequency=single(frequency); freq_one_sp=zeros(1, num_units, 'single'); freq_one_sp(ind_units)=frequency; weight_pool_info(idx_sp, :)=freq_one_sp; end one_feat_sps=weight_pool_info*one_feat_img; end将上述代码转换为pytorch代码,并可视化超像素的索引】

时间: 2023-08-15 10:05:57 浏览: 103
ZIP

DAB.zip_DAB SPS_DAB-DPS_DPS DAB_sps_tobaccojai

star5星 · 资源好评率100%
以下是将给定的 MATLAB 代码转换为 PyTorch 代码的过程: ``` import torch import torch.nn.functional as F import numpy as np from scipy import ndimage def do_sp_pooling(one_feat_img, one_sp_info): img_size = one_feat_img.shape num_units = img_size[0] * img_size[1] dim = img_size[2] one_feat_img = one_feat_img.reshape(num_units, dim) img_size_org = one_sp_info['img_size'] pixel_ind_map = np.arange(num_units).reshape(img_size[0], img_size[1]) pixel_ind_map_org = ndimage.zoom(pixel_ind_map, [img_size_org[0]/img_size[0], img_size_org[1]/img_size[1]], order=0) pixel_ind_sps = one_sp_info['pixel_ind_sps'] num_sp = len(pixel_ind_sps) weight_pool_info = torch.zeros((num_sp, num_units), dtype=one_feat_img.dtype, device=one_feat_img.device) for idx_sp in range(num_sp): pixel_ind_sp_one = pixel_ind_sps[idx_sp] ind_pixels_in_map = pixel_ind_map_org[pixel_ind_sp_one] _, uniqueIndex = np.unique(ind_pixels_in_map, return_inverse=True) frequency = np.bincount(uniqueIndex) / len(ind_pixels_in_map) frequency = frequency.astype(one_feat_img.dtype) freq_one_sp = torch.zeros(num_units, dtype=one_feat_img.dtype, device=one_feat_img.device) freq_one_sp[ind_pixels_in_map] = torch.tensor(frequency, dtype=one_feat_img.dtype, device=one_feat_img.device) weight_pool_info[idx_sp, :] = freq_one_sp one_feat_sps = torch.mm(weight_pool_info, one_feat_img) return one_feat_sps, weight_pool_info ``` 这里我们使用了 PyTorch 库中的相关函数来实现对应功能,同时为了可视化超像素的索引,我们可以在函数中增加一些代码: ``` def do_sp_pooling(one_feat_img, one_sp_info): img_size = one_feat_img.shape num_units = img_size[0] * img_size[1] dim = img_size[2] one_feat_img = one_feat_img.reshape(num_units, dim) img_size_org = one_sp_info['img_size'] pixel_ind_map = np.arange(num_units).reshape(img_size[0], img_size[1]) pixel_ind_map_org = ndimage.zoom(pixel_ind_map, [img_size_org[0]/img_size[0], img_size_org[1]/img_size[1]], order=0) pixel_ind_sps = one_sp_info['pixel_ind_sps'] num_sp = len(pixel_ind_sps) weight_pool_info = torch.zeros((num_sp, num_units), dtype=one_feat_img.dtype, device=one_feat_img.device) for idx_sp in range(num_sp): pixel_ind_sp_one = pixel_ind_sps[idx_sp] ind_pixels_in_map = pixel_ind_map_org[pixel_ind_sp_one] _, uniqueIndex = np.unique(ind_pixels_in_map, return_inverse=True) frequency = np.bincount(uniqueIndex) / len(ind_pixels_in_map) frequency = frequency.astype(one_feat_img.dtype) freq_one_sp = torch.zeros(num_units, dtype=one_feat_img.dtype, device=one_feat_img.device) freq_one_sp[ind_pixels_in_map] = torch.tensor(frequency, dtype=one_feat_img.dtype, device=one_feat_img.device) weight_pool_info[idx_sp, :] = freq_one_sp # 可视化超像素的索引 img_sp = np.zeros_like(pixel_ind_map_org) img_sp[pixel_ind_sp_one//img_size[1], pixel_ind_sp_one%img_size[1]] = 1 img_sp = ndimage.binary_dilation(img_sp, iterations=1) img_sp = np.where(img_sp, idx_sp+1, 0) img_sp = ndimage.zoom(img_sp, [img_size[0]/img_size_org[0], img_size[1]/img_size_org[1]], order=0) plt.imshow(img_sp, cmap='jet', alpha=0.3, vmin=0, vmax=num_sp) one_feat_sps = torch.mm(weight_pool_info, one_feat_img) return one_feat_sps, weight_pool_info ``` 这里我们使用 matplotlib 库来绘制可视化结果,以 jet 颜色映射来表示超像素的索引。
阅读全文

相关推荐

void CS5532_INITIAL(void) { uchar CS5532_i; EX1=0; //IE=0x00; CS5532_A0=0; CS5532_A1=0; CS5532_SDO=1; CS5532_SDI=0; CS5532_SCLK=0; CS5532_CS=0; CS5532_SDI=1; _nop_(); for(CS5532_i=0;CS5532_i<135;CS5532_i++) //sending the 16 bytes sync1 and 1 byte sync0 { CS5532_SCLK=1; _nop_(); CS5532_SCLK=0; _nop_(); } CS5532_SDI=0; _nop_(); CS5532_SCLK=1; _nop_(); CS5532_SCLK=0; _nop_(); CS5532_CS=1; CS5532_WRITE_ONE_BYTE(0x03); //reset the cs5532 namely set RS=1 CS5532_WRITE_ONE_BYTE(0x22); CS5532_WRITE_ONE_BYTE(0x40); CS5532_WRITE_ONE_BYTE(0x00); CS5532_WRITE_ONE_BYTE(0x00); DELAY_TIMES(0xAA); //delay about 20ms CS5532_WRITE_ONE_BYTE(0x0B); //read the RV bit and set RV=0 CS5532_READ_ONE_BYTE(); CS5532_READ_ONE_BYTE(); CS5532_READ_ONE_BYTE(); CS5532_READ_ONE_BYTE(); DELAY_TIMES(0xAA); //delay about 20ms CS5532_WRITE_ONE_BYTE(0x03); //set the cs5532 system configuration register CS5532_WRITE_ONE_BYTE(0x02); CS5532_WRITE_ONE_BYTE(0x40); CS5532_WRITE_ONE_BYTE(0x00); CS5532_WRITE_ONE_BYTE(0x00); DELAY_TIMES(0xAA); //delay about 20ms CS5532_WRITE_ONE_BYTE(0x05); //set the cs5532 channel setup register CS5532_WRITE_ONE_BYTE(0x32); CS5532_WRITE_ONE_BYTE(0x40); //0x00 for bipolar preforming CS5532_WRITE_ONE_BYTE(0x32); //speed 7.5sps CS5532_WRITE_ONE_BYTE(0x40); DELAY_TIMES(0xAA); //delay about 20ms CS5532_WRITE_ONE_BYTE(0xC0); //cs5532 performing successive conversion CS5532_CS=0; CS5532_SDO=1; DELAY_TIMES(0xFF); DELAY_TIMES(0xFF); //DELAY_TIMES(0xFF); //PX1=1; //set the external interrupt 1 highest prior IT1=1; //set the external interrupt 1 edge trigger mode EX1=1; EA=1; //IE=0x84; //external interrupt 1 turn on }

最新推荐

recommend-type

SAP_BW4HANA_en_2.0 SPS06.pdf

SAP BW/4HANA是SAP公司推出的一款专为SAP HANA平台高度优化的数据仓库解决方案,旨在提供敏捷、灵活的数据建模和SAP HANA优化的工作流程,同时拥有先进的用户界面。这款系统旨在帮助企业实现最佳运行,通过标准化的...
recommend-type

h265官方文档__T-REC-H.265-201504-I!!PDF-E.pdf

【正文】 《High Efficiency Video Coding (HEVC)》即H.265,是由国际电信联盟(ITU-T)和国际标准化组织(ISO/IEC)共同制定的一种视频编码标准,旨在提高视频压缩效率,降低存储和传输视频所需的数据量。...
recommend-type

微软内部资料-SQL性能优化3

Some of the resources have “sub-resources.” The followings are sub-resources displayed by the sp_lock output: Database Lock Sub-Resources: Full Database Lock (default) [BULK-OP-DB] – Bulk Operation...
recommend-type

(175797816)华南理工大学信号与系统Signal and Systems期末考试试卷及答案

内容来源于网络分享,如有侵权请联系我删除。另外如果没有积分的同学需要下载,请私信我。
recommend-type

Java毕业设计项目:校园二手交易网站开发指南

资源摘要信息:"Java是一种高性能、跨平台的面向对象编程语言,由Sun Microsystems(现为Oracle Corporation)的James Gosling等人在1995年推出。其设计理念是为了实现简单性、健壮性、可移植性、多线程以及动态性。Java的核心优势包括其跨平台特性,即“一次编写,到处运行”(Write Once, Run Anywhere),这得益于Java虚拟机(JVM)的存在,它提供了一个中介,使得Java程序能够在任何安装了相应JVM的设备上运行,无论操作系统如何。 Java是一种面向对象的编程语言,这意味着它支持面向对象编程(OOP)的三大特性:封装、继承和多态。封装使得代码模块化,提高了安全性;继承允许代码复用,简化了代码的复杂性;多态则增强了代码的灵活性和扩展性。 Java还具有内置的多线程支持能力,允许程序同时处理多个任务,这对于构建服务器端应用程序、网络应用程序等需要高并发处理能力的应用程序尤为重要。 自动内存管理,特别是垃圾回收机制,是Java的另一大特性。它自动回收不再使用的对象所占用的内存资源,这样程序员就无需手动管理内存,从而减轻了编程的负担,并减少了因内存泄漏而导致的错误和性能问题。 Java广泛应用于企业级应用开发、移动应用开发(尤其是Android平台)、大型系统开发等领域,并且有大量的开源库和框架支持,例如Spring、Hibernate、Struts等,这些都极大地提高了Java开发的效率和质量。 标签中提到的Java、毕业设计、课程设计和开发,意味着文件“毕业设计---社区(校园)二手交易网站.zip”中的内容可能涉及到Java语言的编程实践,可能是针对学生的课程设计或毕业设计项目,而开发则指出了这些内容的具体活动。 在文件名称列表中,“SJT-code”可能是指该压缩包中包含的是一个特定的项目代码,即社区(校园)二手交易网站的源代码。这类网站通常需要实现用户注册、登录、商品发布、浏览、交易、评价等功能,并且需要后端服务器支持,如数据库连接和事务处理等。考虑到Java的特性,网站的开发可能使用了Java Web技术栈,如Servlet、JSP、Spring Boot等,以及数据库技术,如MySQL或MongoDB等。"
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【MVC标准化:肌电信号处理的终极指南】:提升数据质量的10大关键步骤与工具

![MVC标准化](https://img-blog.csdn.net/20160221141956498) # 摘要 MVC标准化是肌电信号处理中确保数据质量的重要步骤,它对于提高测量结果的准确性和可重复性至关重要。本文首先介绍肌电信号的生理学原理和MVC标准化理论,阐述了数据质量的重要性及影响因素。随后,文章深入探讨了肌电信号预处理的各个环节,包括噪声识别与消除、信号放大与滤波技术、以及基线漂移的校正方法。在提升数据质量的关键步骤部分,本文详细描述了信号特征提取、MVC标准化的实施与评估,并讨论了数据质量评估与优化工具。最后,本文通过实验设计和案例分析,展示了MVC标准化在实践应用中的具
recommend-type

能否提供一个在R语言中执行Framingham数据集判别分析的详细和完整的代码示例?

当然可以。在R语言中,Framingham数据集是一个用于心血管疾病研究的经典数据集。以下是使用`ggfortify`包结合` factoextra`包进行判别分析的一个基本步骤: 首先,你需要安装所需的库,如果尚未安装,可以使用以下命令: ```r install.packages(c("ggfortify", "factoextra")) ``` 然后加载所需的数据集并做预处理。Framingham数据集通常存储在`MASS`包中,你可以通过下面的代码加载: ```r library(MASS) data(Framingham) ``` 接下来,我们假设你已经对数据进行了适当的清洗和转换
recommend-type

Blaseball Plus插件开发与构建教程

资源摘要信息:"Blaseball Plus" Blaseball Plus是一个与游戏Blaseball相关的扩展项目,该项目提供了一系列扩展和改进功能,以增强Blaseball游戏体验。在这个项目中,JavaScript被用作主要开发语言,通过在package.json文件中定义的脚本来完成构建任务。项目说明中提到了开发环境的要求,即在20.09版本上进行开发,并且提供了一个flake.nix文件来复制确切的构建环境。虽然Nix薄片是一项处于工作状态(WIP)的功能且尚未完全记录,但可能需要用户自行安装系统依赖项,其中列出了Node.js和纱(Yarn)的特定版本。 ### 知识点详细说明: #### 1. Blaseball游戏: Blaseball是一个虚构的棒球游戏,它在互联网社区中流行,其特点是独特的规则、随机事件和社区参与的元素。 #### 2. 扩展开发: Blaseball Plus是一个扩展,它可能是为在浏览器中运行的Blaseball游戏提供额外功能和改进的软件。扩展开发通常涉及编写额外的代码来增强现有软件的功能。 #### 3. JavaScript编程语言: JavaScript是一种高级的、解释执行的编程语言,被广泛用于网页和Web应用的客户端脚本编写,是开发Web扩展的关键技术之一。 #### 4. package.json文件: 这是Node.js项目的核心配置文件,用于声明项目的各种配置选项,包括项目名称、版本、依赖关系以及脚本命令等。 #### 5.构建脚本: 描述中提到的脚本,如`build:dev`、`build:prod:unsigned`和`build:prod:signed`,这些脚本用于自动化构建过程,可能包括编译、打包、签名等步骤。`yarn run`命令用于执行这些脚本。 #### 6. yarn包管理器: Yarn是一个快速、可靠和安全的依赖项管理工具,类似于npm(Node.js的包管理器)。它允许开发者和项目管理依赖项,通过简单的命令行界面可以轻松地安装和更新包。 #### 7. Node.js版本管理: 项目要求Node.js的具体版本,这里是14.9.0版本。管理特定的Node.js版本是重要的,因为在不同版本间可能会存在API变化或其他不兼容问题,这可能会影响扩展的构建和运行。 #### 8. 系统依赖项的安装: 文档提到可能需要用户手动安装系统依赖项,这在使用Nix薄片时尤其常见。Nix薄片(Nix flakes)是一个实验性的Nix特性,用于提供可复现的开发环境和构建设置。 #### 9. Web扩展的工件放置: 构建后的工件放置在`addon/web-ext-artifacts/`目录中,表明这可能是一个基于WebExtension的扩展项目。WebExtension是一种跨浏览器的扩展API,用于创建浏览器扩展。 #### 10. 扩展部署: 描述中提到了两种不同类型的构建版本:开发版(dev)和生产版(prod),其中生产版又分为未签名(unsigned)和已签名(signed)版本。这些不同的构建版本用于不同阶段的开发和发布。 通过这份文档,我们能够了解到Blaseball Plus项目的开发环境配置、构建脚本的使用、依赖管理工具的运用以及Web扩展的基本概念和部署流程。这些知识点对于理解JavaScript项目开发和扩展构建具有重要意义。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依