matlab resize reshape
时间: 2023-08-15 15:13:31 浏览: 147
在MATLAB中,`resize`和`reshape`是用于改变数组尺寸或形状的函数。
`resize`函数用于调整数组的尺寸,可以将数组的大小扩大或缩小。它接受两个参数,第一个参数是要调整大小的数组,第二个参数是目标大小。例如,要将数组`A`调整为大小为3x3,可以使用以下代码:
```matlab
A = [1 2 3; 4 5 6; 7 8 9];
B = resize(A, [3 3]);
```
`reshape`函数用于改变数组的形状,即改变数组的维度。它接受两个参数,第一个参数是要改变形状的数组,第二个参数是目标形状。目标形状可以用一个向量表示,其中每个元素表示相应维度的大小。例如,要将一个大小为2x4的数组`A`改变形状为4x2,可以使用以下代码:
```matlab
A = [1 2 3 4; 5 6 7 8];
B = reshape(A, [4 2]);
```
注意,`resize`函数可以调整数组的大小,而`reshape`函数只能改变数组的形状,不会改变数组中元素的数量。
相关问题
matlab符号矩阵resize
在MATLAB中,符号矩阵无法调整大小。符号矩阵是一种特殊的矩阵类型,其中每个元素都是一个符号表达式,而不是一个数值。由于符号表达式不能被转换为数字,因此不能对符号矩阵进行常规的数值计算或操作。
如果您需要调整大小以及进行其他数学运算,可以将符号表达式转换为数值。使用`double()`函数可以将符号矩阵转换为双精度浮点数矩阵,然后可以使用MATLAB的常规矩阵操作函数来调整大小。
例如,假设您有一个2x3的符号矩阵`A`:
```
A = sym([1 2 3; 4 5 6])
```
您可以将其转换为双精度浮点数矩阵:
```
B = double(A)
```
然后您可以使用MATLAB的常规矩阵操作函数来调整大小或进行其他数学运算。例如,要将矩阵大小更改为3x2:
```
C = reshape(B, [3 2])
```
A = imread('krabi1.bmp','BMP'); %read in the image A_shrunk = imresize(A,0.2); % we’ll reduce the resolution, as otherwise the file size is too large imshow(A_shrunk) % displays the shrunken image Bs = reshape(A_shrunk,[388*518*3,1,1]); % resizes this image from a pixel array of three colours to a one-dimensional data stream C = de2bi(double(Bs)); % converts these values to binary representation % You can then resize this array to a linear, one-dimensional array. % this data stream C is then what you can communicate over your channel. % recover the image from the binary sequence BS_rec = uint8(bi2de(C)); % convert bits to pixel values. A_rec = reshape(BS_rec,[388,518,3]); % reshape back to a coloured pixel array. imshow(A_rec) % display the recovered image. Explore the pskmod and pskdemod commands in MATLAB. Use these to modulate and demodulate the binary sequence into a binary PSK signal. (Hint: the command should be something like D = pskmod(C,2). Display a part of this signal, and explain carefully how we have represented this signal in MATLAB, and how it differs from the analysis we performed in Part A. Transmit this signal through an AWGN channel using the awgn() function for a range of signal to noise ratios. Demodulate and comment on the effect of the noise on the image. A suitable range of signal to noise ratios is –0.5dB to 5 dB. The bit error rate refers to the fraction of bits that are received in error. This can also be interpreted as the probability that a bit is received in error. Calculate the bit error rate (BER) for the signal to noise ratios you used above. Comment on the correlation between BER and perceptual image quality. Now apply channel coding to the transmitted data sequence. Use encode(msg,7,4,’hamming’), encode(msg,15,7,’bch’), and convenc, following the example listed in the help window (recall, in MATLAB type “help convenc” to obtain the help information for that command. For each of these codes, study how the code can reduce the BER and improve image quality for each SNR you studied above.
这是一个关于数字图像处理和通信的问题,需要一些MATLAB知识。下面是对问题的回答:
1. 读入并压缩图像
首先,使用`imread`函数读入一张图片,并使用`imresize`函数将图片压缩到原来的20%大小:
```
A = imread('krabi1.bmp', 'BMP');
A_shrunk = imresize(A, 0.2);
```
2. 将图像转换为一维数据流
将压缩后的图像重新排列为一维数据流,以便进行数字通信。使用`reshape`函数将3通道的像素矩阵转换为一维列向量,并使用`de2bi`函数将像素值转换为二进制表示:
```
Bs = reshape(A_shrunk, [388*518*3, 1, 1]);
C = de2bi(double(Bs));
```
3. 二进制PSK调制
使用`pskmod`函数将二进制数据流进行相位调制,生成二进制PSK信号。例如,调制成二进制PSK2:
```
D = pskmod(C, 2);
```
4. 加入高斯白噪声
使用`awgn`函数将二进制PSK信号加入高斯白噪声,模拟通信信道的影响。例如,将信噪比设置为0dB:
```
noisy_D = awgn(D, 0, 'measured');
```
5. 二进制PSK解调
使用`pskdemod`函数将接收到的二进制PSK信号解调回二进制数据流:
```
rec_C = pskdemod(noisy_D, 2);
```
6. 解码并恢复图像
使用`bi2de`函数将二进制数据流转换为像素值,然后使用`reshape`函数将像素值重新排列为3通道的像素矩阵,最后使用`imshow`函数显示恢复后的图像:
```
rec_Bs = uint8(bi2de(rec_C));
A_rec = reshape(rec_Bs, [388, 518, 3]);
imshow(A_rec);
```
7. 计算误码率
使用`biterr`函数计算解调后的数据流和原始数据流之间的误码率,并根据不同信噪比的误码率绘制误码率曲线:
```
ber = zeros(1, length(snr));
for i = 1:length(snr)
noisy_D = awgn(D, snr(i), 'measured');
rec_C = pskdemod(noisy_D, 2);
ber(i) = biterr(C, rec_C) / length(C);
end
semilogy(snr, ber);
```
8. 应用通道编码
使用`encode`函数对二进制数据流进行通道编码,对比不同编码方案的误码率曲线和图像质量:
```
% Hamming(7,4)编码
hamming_encoded = encode(C, 7, 4, 'hamming');
hamming_D = pskmod(hamming_encoded, 2);
hamming_noisy_D = awgn(hamming_D, snr(i), 'measured');
hamming_rec_C = pskdemod(hamming_noisy_D, 2);
hamming_rec_Bs = uint8(bi2de(hamming_rec_C));
hamming_A_rec = reshape(hamming_rec_Bs, [388, 518, 3]);
hamming_ber(i) = biterr(C, hamming_rec_C) / length(C);
% BCH(15,7)编码
bch_encoded = encode(C, 15, 7, 'bch');
bch_D = pskmod(bch_encoded, 2);
bch_noisy_D = awgn(bch_D, snr(i), 'measured');
bch_rec_C = pskdemod(bch_noisy_D, 2);
bch_rec_Bs = uint8(bi2de(bch_rec_C));
bch_A_rec = reshape(bch_rec_Bs, [388, 518, 3]);
bch_ber(i) = biterr(C, bch_rec_C) / length(C);
% 卷积编码
trellis = poly2trellis(7, [171 133]);
conv_encoded = convenc(C, trellis);
conv_D = pskmod(conv_encoded, 2);
conv_noisy_D = awgn(conv_D, snr(i), 'measured');
conv_rec_D = pskdemod(conv_noisy_D, 2);
conv_rec_C = vitdec(conv_rec_D, trellis, 15, 'trunc', 'hard');
conv_rec_Bs = uint8(bi2de(conv_rec_C));
conv_A_rec = reshape(conv_rec_Bs, [388, 518, 3]);
conv_ber(i) = biterr(C, conv_rec_C) / length(C);
```
需要注意的是,以上代码仅供参考,具体实现还需要根据实际情况进行调整。
阅读全文