matlab光流法的代码
时间: 2023-11-28 19:45:45 浏览: 105
以下是一个基于光流法的目标跟踪的Matlab代码示例:
```matlab
% 读取视频文件
videoReader = vision.VideoFileReader('test.avi');
% 创建一个视频播放器
videoPlayer = vision.VideoPlayer('Position', [100, 100, 680,520]);
% 读取第一帧
frame = step(videoReader);
% 提取第一帧的特征点
points = detectMinEigenFeatures(rgb2gray(frame), 'MinQuality', 0.1);
% 在第一帧中跟踪特征点
tracker = vision.PointTracker('MaxBidirectionalError', 1);
points = points.Location;initialize(tracker, points, frame);
% 循环处理视频中的每一帧
while ~isDone(videoReader)
% 读取下一帧
frame = step(videoReader);
% 跟踪特征点
[points, isFound] = step(tracker, frame);
visiblePoints = points(isFound, :);
% 估计运动
[num, ~] = size(visiblePoints);
if num >= 2
% 估计基础矩阵
[fMatrix, epipolarInliers] = estimateFundamentalMatrix(...
visiblePoints, tracker.TrackingPoints(isFound, :), 'Method', 'RANSAC', ...
'NumTrials', 10000, 'DistanceThreshold', 0.1, 'Confidence', 99.99);
% 选择匹配点
visiblePoints = visiblePoints(epipolarInliers, :);
tracker.TrackingPoints = tracker.TrackingPoints(isFound, :);
% 估计运动
[tform, ~, ~] = estimateGeometricTransform(...
tracker.TrackingPoints, visiblePoints, 'affine');
% 应用运动
frame = imwarp(frame, tform, 'OutputView', imref2d(size(frame)));
% 显示跟踪结果
step(videoPlayer, frame);
end
end
% 释放资源
release(videoReader);
release(videoPlayer);
```
该代码使用了`vision`库中的`VideoFileReader`、`VideoPlayer`、`detectMinEigenFeatures`、`PointTracker`等函数,实现了基于光流法的目标跟踪。具体来说,该代码首先读取视频文件,并提取第一帧的特征点,然后在后续的每一帧中跟踪这些特征点,并估计运动,最后将运动应用到当前帧上并显示跟踪结果。
阅读全文