先进先出队列式分支限界法求解0-1背包问题用c++时间复杂度和空间复杂度具体分析

时间: 2023-06-14 11:03:50 浏览: 100
先进先出队列式分支限界法是一种求解0-1背包问题的算法,它的时间复杂度和空间复杂度如下: 时间复杂度: 在最坏情况下,先进先出队列式分支限界法的时间复杂度为O(2^n),其中n是背包中物品的数量。这是因为在每一层的分支过程中,都需要对当前节点的左右子节点进行处理,而每次处理都会生成两个子节点,因此总共需要处理2^n个节点。 空间复杂度: 在先进先出队列式分支限界法中,需要维护一个队列来存储当前需要处理的节点,因此空间复杂度为O(2^n)。此外,还需要维护一个数组来记录每个节点的状态和价值,其大小也是O(2^n)。因此,该算法的空间复杂度也为O(2^n)。 总结: 先进先出队列式分支限界法是一种求解0-1背包问题的高效算法,但是在处理大规模问题时,它的时间复杂度和空间复杂度都很高,因此在实际应用中需要慎重考虑。
相关问题

先进先出队列式分支限界法求解0-1背包问题用c++完整代码

以下是使用先进先出队列式分支限界法求解0-1背包问题的完整C代码: ``` #include<stdio.h> #include<stdlib.h> #define MAX_SIZE 100 //物品结构体 typedef struct _item{ int weight; //重量 int value; //价值 int bound; //价值上界 }Item; //结点结构体 typedef struct _node{ int level; //决策树层数 int profit; //当前已获得的价值 int weight; //当前已占用的重量 int bound; //价值上界 int select[MAX_SIZE]; //选择情况 }Node; //队列结构体 typedef struct _queue{ Node elem[MAX_SIZE]; //队列元素 int front; //队头指针 int rear; //队尾指针 }Queue; //初始化队列 void initQueue(Queue *q){ q->front = q->rear = 0; } //判断队列是否为空 int isEmpty(Queue *q){ if(q->front == q->rear) return 1; else return 0; } //进队列 void enqueue(Queue *q, Node n){ if((q->rear+1)%MAX_SIZE == q->front){ printf("Queue is full!\n"); exit(1); } q->elem[q->rear] = n; q->rear = (q->rear+1)%MAX_SIZE; } //出队列 Node dequeue(Queue *q){ if(isEmpty(q)){ printf("Queue is empty!\n"); exit(1); } Node n = q->elem[q->front]; q->front = (q->front+1)%MAX_SIZE; return n; } //计算结点的价值上界 int bound(Node n, int nItems, Item items[]){ int j, k; int totalWeight; int boundValue; //剩余物品全部装入背包 if(n.weight >= items[n.level].weight){ boundValue = n.profit; totalWeight = n.weight; for(j=n.level+1; j<nItems; j++){ if(totalWeight+items[j].weight <= MAX_SIZE){ totalWeight += items[j].weight; boundValue += items[j].value; }else{ k = MAX_SIZE-totalWeight; boundValue += (int)(k*(items[j].value/items[j].weight)); break; } } } //剩余物品不能全部装入背包 else{ boundValue = n.profit+(int)((MAX_SIZE-n.weight)*(items[n.level].value/items[n.level].weight)); totalWeight = MAX_SIZE; } return boundValue; } //先进先出队列式分支限界法 int knapsack(int nItems, Item items[], int capacity, int *solution){ Queue q; Node u, v; int i; initQueue(&q); //初始化根结点 u.level = -1; u.profit = 0; u.weight = 0; //计算根结点的价值上界 u.bound = bound(u, nItems, items); enqueue(&q, u); int maxProfit = 0; while(!isEmpty(&q)){ u = dequeue(&q); //如果结点的价值上界小于当前最优解,则剪枝 if(u.bound <= maxProfit) continue; //扩展结点 if(u.level < nItems-1){ //不选当前物品 v.level = u.level+1; v.weight = u.weight; v.profit = u.profit; v.bound = bound(v, nItems, items); for(i=0; i<=u.level; i++){ v.select[i] = u.select[i]; } v.select[v.level] = 0; enqueue(&q, v); //选当前物品 v.level = u.level+1; v.weight = u.weight+items[v.level].weight; v.profit = u.profit+items[v.level].value; v.bound = bound(v, nItems, items); for(i=0; i<=u.level; i++){ v.select[i] = u.select[i]; } v.select[v.level] = 1; //更新当前最优解 if(v.profit > maxProfit){ maxProfit = v.profit; for(i=0; i<nItems; i++){ solution[i] = v.select[i]; } } //如果结点的价值上界大于当前最优解,则加入队列 if(v.bound > maxProfit){ enqueue(&q, v); } } } return maxProfit; } int main(){ int nItems = 5; Item items[5] = {{2, 12, 0}, {1, 10, 0}, {3, 20, 0}, {2, 15, 0}, {5, 25, 0}}; int capacity = 8; int solution[5] = {0}; int maxProfit = knapsack(nItems, items, capacity, solution); printf("Total profit: %d\n", maxProfit); printf("Solution: "); for(int i=0; i<nItems; i++){ printf("%d ", solution[i]); } printf("\n"); return 0; } ``` 其中,Item结构体存储物品的重量、价值和价值上界;Node结构体存储结点的决策树层数、当前已获得的价值、当前已占用的重量、价值上界和选择情况;Queue结构体为先进先出队列。在主函数中,定义了5个物品,背包容量为8,使用solution数组存储选中的物品,最终输出了最大价值和选择情况。

先进先出队列式分支限界法求解0-1背包问题

先进先出队列式分支限界法是一种求解0-1背包问题的有效方法。它的基本思路是通过分支限界法来逐步减小搜索空间,从而找到最优解。 具体实现步骤如下: 1. 将所有物品按照单位重量价值从大到小排序。 2. 定义一个先进先出队列,将第一个节点插入队列中。 3. 对于每个节点,计算当前剩余物品的最大价值上界,如果该上界小于当前最优解,则该节点不再扩展。 4. 对于每个节点,生成两个子节点,一个子节点表示选择当前物品,一个子节点表示不选择当前物品。 5. 将子节点插入队列中,并按照上界从大到小排序。 6. 从队列中取出队首节点,重复步骤3-5,直到队列为空或者找到最优解。 7. 返回最优解。 在实现过程中,需要注意以下几点: 1. 计算最大价值上界时,需要注意当前物品只能选择一部分,而不是全部。 2. 子节点的生成顺序对算法的效率有很大影响,可以尝试不同的生成顺序来提高效率。 3. 可以使用一个优先队列来维护节点,以便快速获取上界最大的节点。 通过以上步骤,可以有效地求解0-1背包问题。

相关推荐

最新推荐

recommend-type

埃森哲制药企业数字化转型项目顶层规划方案glq.pptx

埃森哲制药企业数字化转型项目顶层规划方案glq.pptx
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

用 Python 画一个可以动的爱心

好的,我可以帮助您使用Python来绘制一个动态的爱心。您可以使用turtle库来实现。以下是实现代码: ```python import turtle import math # 设置画布和画笔 canvas = turtle.Screen() canvas.bgcolor("black") pencil = turtle.Turtle() pencil.speed(0) pencil.color("red", "pink") pencil.pensize(3) # 定义爱心函数 def draw_love(heart_size, x_offset=0, y_offset=0):
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这
recommend-type

已知n个人(以编号0,1,2,3...n-1分别表示)围坐在一张圆桌周围。从编号为0的人开始报数1,数到m的那个人出列;他的下一个人又从1开始报数,数到m+1的那个人又出列(每次报数值加1);依此规律重复下去,直到圆桌周围的人全部出列。用递归方法解决

这个问题可以使用递归方法解决。下面是一个思路: 1. 定义一个函数,接收三个参数:n、m、i,表示还剩下n个人,每次数到m时出列,当前报数的人是i; 2. 如果n=1,返回i,即最后留下的那个人的编号; 3. 否则,计算出下一个出列的人的编号j,通过递归调用函数解决n-1个人的问题,其结果为k; 4. 如果k < j,即当前i之后出列的人的编号为k,需要将k转换为在i之前出列的编号,返回值为 k+(n-1); 5. 如果k>=j,即当前i之后出列的人的编号为k,返回值为 k-(j-1); 下面是对应的Python代码: ```python def josephus(n, m, i):
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。