SLTM多步预测模型代码
时间: 2023-11-12 13:49:30 浏览: 94
以下使用PyTorch实现的SLTM多步预测模型的代码示例:
```python
import torch
import torch.nn as nn
class SLTM(nn.Module):
def __init__(self, input_size, hidden_size, output_size, num_layers, dropout):
super(SLTM, self).__init__()
self.input_size = input_size
self.hidden_size = hidden_size
self.output_size = output_size
self.num_layers = num_layers
self.dropout = dropout
self.lstm = nn.LSTM(input_size, hidden_size, num_layers, dropout=dropout, batch_first=True)
self.fc = nn.Linear(hidden_size, output_size)
def forward(self, x):
h0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size).to(x.device)
c0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size).to(x.device)
out, _ = self.lstm(x, (h0, c0))
out = self.fc(out[:, -1, :])
return out
```
其中,`input_size`是输入数据的特征数,`hidden_size`是LSTM的隐藏状态维度,`output_size`是输出数据的维度,`num_layers`是LSTM的层数,`dropout`是dropout的概率。
模型由一个LSTM层和一个全连接层组成。在前向传播中,我们使用`h0`和`c0`初始化LSTM的隐藏状态和细胞状态。然后,将输入数据`x`传递到LSTM中,得到最后一个时间步的输出。最后,将LSTM输出传递到全连接层中,得到模型的输出。
阅读全文