详细阐述faster rcnn与mask rcnn的不同
时间: 2023-10-01 22:07:09 浏览: 106
faster-rcnn详解
Faster R-CNN和Mask R-CNN都是基于深度学习的目标检测算法,它们的主要区别在于以下几个方面:
1. Faster R-CNN是一种两阶段目标检测算法,而Mask R-CNN在Faster R-CNN的基础上增加了一个分支,用于实现目标实例分割。
2. Faster R-CNN主要使用了RPN(Region Proposal Network)来生成候选区域,然后将这些候选区域送入RoI Pooling层,最终通过全连接层和softmax分类器得到最终的检测结果。而Mask R-CNN在Faster R-CNN的基础上增加了一个分支,用于实现目标实例分割。这个分支是在RoI Pooling层之后添加的,它包括一个简单的FCN和一个二值化层,用于生成实例分割掩码。
3. 在训练时,Mask R-CNN会同时优化检测和分割两个任务的损失函数。而Faster R-CNN只优化检测任务的损失函数。
4. 在推理时,Mask R-CNN可以输出每个目标实例的分割掩码,而Faster R-CNN只能输出目标的位置和类别信息。
总之,Faster R-CNN和Mask R-CNN都是非常优秀的目标检测算法,它们的主要区别在于Mask R-CNN在Faster R-CNN的基础上增加了一个分支,用于实现目标实例分割。
阅读全文