/** * 通过最坏适应算法进行内存分配 * @param free_list 待操作的空闲分区链表 * @param assign_list 待操作的分配分区链表 * @param size 进程请求的内存大小 * @param ret_begin 分配成功时分配的内存块的起始地址 * @param ret_end 分配成功时分配的内存块的结束地址 * @return 分配成功返回true,反之返回false */ bool WF(LinkList free_list, LinkList assign_list, int size, int *ret_begin, int *ret_end) { LNode *cur = free_list.m_head->next;补全这段代码

时间: 2024-04-23 08:23:35 浏览: 14
while (cur != nullptr) { if (cur->size >= size) { // 找到第一个大小不小于所需的空闲分区 LNode *new_node = new LNode; new_node->begin = cur->begin; new_node->end = cur->begin + size; new_node->size = size; // 修改原空闲分区 cur->begin += size; cur->size -= size; // 将新分配的空间加入分配分区链表 assign_list.insert(new_node); // 返回分配的起始地址和结束地址 *ret_begin = new_node->begin; *ret_end = new_node->end; return true; } cur = cur->next; } return false; }
相关问题

* 通过最佳适应算法进行内存分配 * @param free_list 待操作的空闲分区链表 * @param assign_list 待操作的分配分区链表 * @param size 进程请求的内存大小 * @param ret_begin 分配成功时分配的内存块的起始地址 * @param ret_end 分配成功时分配的内存块的结束地址 * @return 分配成功返回true,反之返回false */写一个函数来对空闲分区链表的空闲分区排序

以下是一个针对空闲分区链表的最佳适应算法内存分配函数,并包括对空闲分区链表的排序: ``` bool best_fit_allocation(MemBlock* free_list, MemBlock* assign_list, int size, void*& ret_begin, void*& ret_end) { // 对空闲分区链表进行排序 sort_free_list(free_list); // 在空闲分区链表中查找第一个能够容纳请求大小的分区 MemBlock* p = free_list; while (p) { if (p->size >= size) { break; } p = p->next; } // 如果找到了合适的分区 if (p) { // 分配内存 ret_begin = p->begin; ret_end = ret_begin + size; assign_list->insert(ret_begin, ret_end); // 更新空闲分区链表 if (p->size == size) { // 如果找到的分区大小正好等于请求大小,直接删除该分区 if (p == free_list) { free_list = p->next; } delete p; } else { // 如果找到的分区比请求大小大,将该分区分裂成两个分区,一个分配,一个空闲 MemBlock* new_free_block = new MemBlock(p->begin + size, p->size - size, p->next); if (p == free_list) { free_list = new_free_block; } else { MemBlock* q = free_list; while (q->next != p) { q = q->next; } q->next = new_free_block; } delete p; } return true; } // 没有找到合适的分区 return false; } // 对空闲分区链表进行排序 void sort_free_list(MemBlock* free_list) { if (free_list == nullptr || free_list->next == nullptr) { return; } MemBlock* p = free_list; MemBlock* q = p->next; MemBlock* r = q->next; while (r != nullptr) { if (q->size > r->size) { q->next = r->next; r->next = q; p->next = r; p = r; r = q->next; } else { p = q; q = r; r = r->next; } } } ``` 在这个函数中,我们首先调用`sort_free_list`函数对空闲分区链表进行排序,以便能够更快地找到合适的分区。然后,在空闲分区链表中查找第一个能够容纳请求大小的分区,如果找到了合适的分区,就将其分配给进程,并更新空闲分区链表。如果没有找到合适的分区,则返回false。 `sort_free_list`函数使用的是插入排序算法,它将空闲分区链表按照分区大小从小到大排序。排序后,我们就能够更快地找到合适的分区。

/** * 通过最佳适应算法进行内存分配 * @param free_list 待操作的空闲分区链表 * @param assign_list 待操作的分配分区链表 * @param size 进程请求的内存大小 * @param ret_begin 分配成功时分配的内存块的起始地址 * @param ret_end 分配成功时分配的内存块的结束地址 * @return 分配成功返回true,反之返回false */ bool BF(LinkList free_list, LinkList assign_list, int size, int *ret_begin, int *ret_end) { LNode *cur = free_list.m_head->next; /begin 补全以下代码/ /end/ }请补充代码

以下是使用最佳适应算法进行内存分配的代码: ``` /** * 通过最佳适应算法进行内存分配 * @param free_list 待操作的空闲分区链表 * @param assign_list 待操作的分配分区链表 * @param size 进程请求的内存大小 * @param ret_begin 分配成功时分配的内存块的起始地址 * @param ret_end 分配成功时分配的内存块的结束地址 * @return 分配成功返回true,反之返回false */ bool BF(LinkList free_list, LinkList assign_list, int size, int *ret_begin, int *ret_end) { LNode *cur = free_list.m_head->next; LNode *best = NULL; // 最佳匹配的空闲分区 while (cur) { if (cur->size >= size && (!best || cur->size < best->size)) { best = cur; // 找到最佳匹配 } cur = cur->next; } if (!best) { return false; // 无法找到合适的空闲分区 } if (best->size == size) { // 空闲分区大小刚好合适,直接分配 *ret_begin = best->begin; *ret_end = best->end; assign_list.Insert(best->begin, best->end); free_list.Delete(best); } else { // 空闲分区大小大于请求大小,需要切割分区再分配 int new_begin = best->begin; int new_end = best->begin + size - 1; assign_list.Insert(new_begin, new_end); free_list.Update(best, new_end + 1, best->end); *ret_begin = new_begin; *ret_end = new_end; } return true; } ``` 该函数接收一个空闲分区链表 `free_list` 和一个分配分区链表 `assign_list`,以及一个进程请求的内存大小 `size`,并返回分配成功或失败的结果。该函数使用一个指针 `best` 来记录最佳匹配的空闲分区,最后将分配的内存块插入到分配分区链表中,并从空闲分区链表中删除或更新相应的节点。最后,该函数返回分配成功时的分配内存块的起始地址和结束地址。

相关推荐

补全下述代码:#include "free_list.h" #include "assign_list.h" /** * 通过首次适应算法进行内存分配 * @param free_list 待操作的空闲分区链表 * @param assign_list 待操作的分配分区链表 * @param size 进程请求的内存大小 * @param ret_begin 分配成功时分配的内存块的起始地址 * @param ret_end 分配成功时分配的内存块的结束地址 * @return 分配成功返回true,反之返回false */ bool FF(LinkList free_list, LinkList assign_list, int size, int *ret_begin, int *ret_end) { LNode *cur = free_list.m_head->next; /***begin 补全以下代码***/ /**end**/ } /** * 向内存中归还内存块 * @param free_list 待操作的空闲分区链表 * @param assign_list 待操作的分配分区链表 * @param begin 待归还内存块的起始地址 * @param end 待归还内存块的结束地址 * @return 归还成功返回true,否则返回false */ bool RetSpace(LinkList free_list, LinkList assign_list, int begin, int end) { /***begin 补全以下代码***/ /**end**/ } int main() { LinkList free_list; LinkList assign_list; int records[5][2]; // 累计会申请五次内存,记录这五块内存的起始地址和结束地址 /* 初始化两个链表 */ freeListInit(&free_list, 0, 512); assignListInit(&assign_list); freeListShow(free_list); assignListShow(assign_list); /* reg(300KB) */ printf("----------reg(300KB)----------\n"); FF(free_list, assign_list, 300, &records[0][0], &records[0][1]); freeListShow(free_list); assignListShow(assign_list); /* reg(100KB) */ printf("----------reg(100KB)----------\n"); FF(free_list, assign_list, 100, &records[1][0], &records[1][1]); freeListShow(free_list); assignListShow(assign_list); /* release(300KB) */ printf("----------release(300KB)----------\n"); RetSpace(free_list, assign_list, records[0][0], records[0][1]); freeListShow(free_list); assignListShow(assign_list); /* reg(150KB) */ printf("----------reg(150KB)----------\n"); FF(free_list, assign_list, 150, &records[2][0], &records[2][1]); freeListShow(free_list); assignListShow(assign_list); /* reg(50KB) */ printf("----------reg(50KB)----------\n"); FF(free_list, assign_list, 50, &records[3][0], &records[3][1]); freeListShow(free_list); assignListShow(assign_list); /* reg(90KB) */ printf("----------reg(90KB)----------\n"); FF(free_list, assign_list, 90, &records[4][0], &records[4][1]); freeListShow(free_list); assignListShow(assign_list); /* 销毁两个链表 */ listDestroy(free_list); listDestroy(assign_list); return 0; }

#include "free_list.h" #include "assign_list.h" /** * 通过最佳适应算法进行内存分配 * @param free_list 待操作的空闲分区链表 * @param assign_list 待操作的分配分区链表 * @param size 进程请求的内存大小 * @param ret_begin 分配成功时分配的内存块的起始地址 * @param ret_end 分配成功时分配的内存块的结束地址 * @return 分配成功返回true,反之返回false */ bool BF(LinkList free_list, LinkList assign_list, int size, int *ret_begin, int *ret_end) { LNode *cur = free_list.m_head->next; /***begin 补全以下代码***/ /**end**/ } /** * 向内存中归还内存块 * @param free_list 待操作的空闲分区链表 * @param assign_list 待操作的分配分区链表 * @param begin 待归还内存块的起始地址 * @param end 待归还内存块的结束地址 * @return 归还成功返回true,否则返回false */ bool RetSpace(LinkList free_list, LinkList assign_list, int begin, int end) { /***begin 补全以下代码***/ /**end**/ } int main() { LinkList free_list; LinkList assign_list; int records[5][2]; // 累计会申请五次内存,记录这五块内存的起始地址和结束地址 /* 初始化两个链表 */ freeListInit(&free_list, 0, 512); assignListInit(&assign_list); freeListShow(free_list); assignListShow(assign_list); /* reg(300KB) */ printf("----------reg(300KB)----------\n"); BF(free_list, assign_list, 300, &records[0][0], &records[0][1]); freeListShow(free_list); assignListShow(assign_list); /* reg(100KB) */ printf("----------reg(100KB)----------\n"); BF(free_list, assign_list, 100, &records[1][0], &records[1][1]); freeListShow(free_list); assignListShow(assign_list); /* release(300KB) */ printf("----------release(300KB)----------\n"); RetSpace(free_list, assign_list, records[0][0], records[0][1]); freeListShow(free_list); assignListShow(assign_list); /* reg(150KB) */ printf("----------reg(150KB)----------\n"); BF(free_list, assign_list, 150, &records[2][0], &records[2][1]); freeListShow(free_list); assignListShow(assign_list); /* reg(50KB) */ printf("----------reg(50KB)----------\n"); BF(free_list, assign_list, 50, &records[3][0], &records[3][1]); freeListShow(free_list); assignListShow(assign_list); /* reg(90KB) */ printf("----------reg(90KB)----------\n"); BF(free_list, assign_list, 90, &records[4][0], &records[4][1]); freeListShow(free_list); assignListShow(assign_list); /* 销毁两个链表 */ listDestroy(free_list); listDestroy(assign_list); return 0; }

最新推荐

recommend-type

node-v0.10.13-sunos-x86.tar.gz

Node.js,简称Node,是一个开源且跨平台的JavaScript运行时环境,它允许在浏览器外运行JavaScript代码。Node.js于2009年由Ryan Dahl创立,旨在创建高性能的Web服务器和网络应用程序。它基于Google Chrome的V8 JavaScript引擎,可以在Windows、Linux、Unix、Mac OS X等操作系统上运行。 Node.js的特点之一是事件驱动和非阻塞I/O模型,这使得它非常适合处理大量并发连接,从而在构建实时应用程序如在线游戏、聊天应用以及实时通讯服务时表现卓越。此外,Node.js使用了模块化的架构,通过npm(Node package manager,Node包管理器),社区成员可以共享和复用代码,极大地促进了Node.js生态系统的发展和扩张。 Node.js不仅用于服务器端开发。随着技术的发展,它也被用于构建工具链、开发桌面应用程序、物联网设备等。Node.js能够处理文件系统、操作数据库、处理网络请求等,因此,开发者可以用JavaScript编写全栈应用程序,这一点大大提高了开发效率和便捷性。 在实践中,许多大型企业和组织已经采用Node.js作为其Web应用程序的开发平台,如Netflix、PayPal和Walmart等。它们利用Node.js提高了应用性能,简化了开发流程,并且能更快地响应市场需求。
recommend-type

课设毕设基于SSM的高校二手交易平台-LW+PPT+源码可运行.zip

课设毕设基于SSM的高校二手交易平台--LW+PPT+源码可运行
recommend-type

软件设计师讲义.md

软件设计师讲义.md
recommend-type

时间序列预测,股票方向应用,使用transformer-lstm融合的模型算法

适用人群 针对有一定机器学习和深度学习背景的专业人士,特别是那些对时间序列预测和Transformer以及LSTM模型有兴趣的人。需要一定的Python知识基础 适用场景 用于处理时间序列数据,尤其是在金融领域,示例是股票价格预测。Transformer模型和LSTM的混合使用表明,代码的目的是利用这两种模型的优势来提高预测准确性。 目标 代码的主要目标是利用Transformer模型和LSTM模型来预测时间序列数据,如股票价格。通过实现这两种模型,代码旨在提供一个强大的工具来进行更准确的时间序列分析和预测。
recommend-type

Autojs-PJYSDK-泡椒云网络验证-v1.15.zip

Autojs-PJYSDK-泡椒云网络验证-v1.15.zip
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

SPDK_NVMF_DISCOVERY_NQN是什么 有什么作用

SPDK_NVMF_DISCOVERY_NQN 是 SPDK (Storage Performance Development Kit) 中用于查询 NVMf (Non-Volatile Memory express over Fabrics) 存储设备名称的协议。NVMf 是一种基于网络的存储协议,可用于连接远程非易失性内存存储器。 SPDK_NVMF_DISCOVERY_NQN 的作用是让存储应用程序能够通过 SPDK 查询 NVMf 存储设备的名称,以便能够访问这些存储设备。通过查询 NVMf 存储设备名称,存储应用程序可以获取必要的信息,例如存储设备的IP地址、端口号、名称等,以便能
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。