使用 『蒙特卡洛树搜索算法』 来实现 miniAlphaGo for Reversi,黑白棋中创建AIPlayer部分的python代码怎么实现
时间: 2024-05-08 14:17:48 浏览: 53
蒙特卡洛树搜索算法实现的黑白棋AI系统Python-源码
5星 · 资源好评率100%
以下是一个简单的示例代码:
```python
import random
import copy
class AIPlayer:
def __init__(self, color, max_depth=3, num_simulations=100):
self.color = color
self.max_depth = max_depth
self.num_simulations = num_simulations
def get_move(self, board):
best_move = None
best_score = -float('inf')
for move in board.get_legal_moves(self.color):
score = self.evaluate_move(board, move)
if score > best_score:
best_move = move
best_score = score
return best_move
def evaluate_move(self, board, move):
# Make a copy of the board and apply the move
new_board = copy.deepcopy(board)
new_board.make_move(move, self.color)
# Run simulations using Monte Carlo tree search
total_score = 0
for i in range(self.num_simulations):
score = self.simulate(new_board)
total_score += score
return total_score / self.num_simulations
def simulate(self, board):
# Randomly play out the game until the end
current_color = self.color
while not board.is_game_over():
move = random.choice(board.get_legal_moves(current_color))
board.make_move(move, current_color)
current_color = board.get_opponent(current_color)
# Evaluate the final score
score = board.get_score(self.color)
if score > board.get_score(board.get_opponent(self.color)):
return 1
elif score < board.get_score(board.get_opponent(self.color)):
return -1
else:
return 0
```
在这个实现中,`evaluate_move` 方法使用 Monte Carlo tree search 算法来评估每个可能的落子,并返回一个分数,表示这个落子的好坏程度。`simulate` 方法会随机地模拟一场游戏,然后评估最终的得分。在 `get_move` 方法中,AIPlayer 会遍历所有合法的落子,并选择分数最高的落子作为它的决策。
阅读全文