cnn-lstm预测
时间: 2023-11-26 10:47:20 浏览: 93
以下是使用CNN-LSTM模型进行时间序列预测的示例代码:
```python
import numpy as np
import paddle
import paddle.nn as nn
# 定义CNN-LSTM模型
class CNN_LSTM_Model(nn.Layer):
def __init__(self):
super(CNN_LSTM_Model, self).__init__()
self.cnn = nn.Sequential(
nn.Conv1D(in_channels=1, out_channels=64, kernel_size=3, stride=1, padding=1),
nn.ReLU(),
nn.MaxPool1D(kernel_size=2, stride=2),
nn.Conv1D(in_channels=64, out_channels=128, kernel_size=3, stride=1, padding=1),
nn.ReLU(),
nn.MaxPool1D(kernel_size=2, stride=2)
)
self.lstm = nn.LSTM(input_size=128, hidden_size=64, num_layers=1, batch_first=True)
self.fc = nn.Linear(in_features=64, out_features=1)
def forward(self, x):
x = self.cnn(x)
x = paddle.squeeze(x, axis=-1)
x, _ = self.lstm(x)
x = self.fc(x[:, -1, :])
return x
# 加载模型参数
model = CNN_LSTM_Model()
params_file_path = 'model_params.pdparams'
model_state_dict = paddle.load(params_file_path)
model.load_dict(model_state_dict)
# 加载数据并进行预处理
test_X = np.load('test_X.npy')
test_X = paddle.to_tensor(test_X, dtype='float32')
test_X = paddle.unsqueeze(test_X, axis=1)
# 进行预测
prediction = model(test_X)
prediction = prediction.cpu().numpy()
prediction = prediction.reshape(prediction.shape[0], )
# 反归一化
# ...
# 输出预测结果
print(prediction)
```
在这个示例中,我们首先定义了一个CNN-LSTM模型,然后加载了预训练好的模型参数。接着,我们加载了测试数据并进行了预处理,最后使用模型进行预测并输出结果。需要注意的是,这里的反归一化过程需要根据具体的数据集进行实现。
阅读全文