Define hyperparameters to be tuned. param_grid = {'n_estimators': [50, 100, 200], 'learning_rate': [0.05, 0.1, 0.2, 0.5], 'base_estimator__max_depth': [1, 2, 3, 4]}
时间: 2024-04-26 17:26:00 浏览: 125
这是定义用于网格搜索调优的超参数字典的示例代码。其中,param_grid定义了需要调优的超参数和其取值范围,包括:
1. n_estimators:基础分类器数量,可设置为50, 100或200。
2. learning_rate:每个分类器的权重缩减率,可设置为0.05, 0.1, 0.2或0.5。
3. base_estimator__max_depth:基础分类器的最大深度,可设置为1, 2, 3或4。注意这里的双下划线,它用于表示参数max_depth是基础分类器DecisionTreeClassifier的一个参数。
通过这个步骤,可以定义需要调优的超参数,以便使用网格搜索算法寻找最佳的参数组合,从而优化AdaBoost分类器的性能。
阅读全文