python影像组学评分的代码
时间: 2023-09-03 21:15:56 浏览: 119
影像组学评分是一种利用计算机视觉和机器学习技术对医学影像进行自动化评分的方法。以下为一个可能的 Python 代码示例,用于从医学影像中提取特征并与已知标签训练模型进行评分。
```python
import os
import numpy as np
import pandas as pd
import tensorflow as tf
from keras.preprocessing.image import ImageDataGenerator
from keras.applications.resnet50 import ResNet50
from keras.layers import Dense, GlobalAveragePooling2D
from keras.models import Model
# 设置数据路径和标签
data_dir = "/path/to/data"
train_dir = os.path.join(data_dir, "train")
test_dir = os.path.join(data_dir, "test")
train_csv = os.path.join(data_dir, "train_labels.csv")
test_csv = os.path.join(data_dir, "test_labels.csv")
# 定义图像生成器
train_datagen = ImageDataGenerator(rescale=1./255)
test_datagen = ImageDataGenerator(rescale=1./255)
# 加载训练数据和标签
train_data = pd.read_csv(train_csv)
test_data = pd.read_csv(test_csv)
# 定义ResNet50模型
base_model = ResNet50(weights='imagenet', include_top=False)
x = base_model.output
x = GlobalAveragePooling2D()(x)
x = Dense(1024, activation='relu')(x)
predictions = Dense(1, activation='sigmoid')(x)
model = Model(inputs=base_model.input, outputs=predictions)
# 冻结ResNet50模型权重
for layer in base_model.layers:
layer.trainable = False
# 编译模型
model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])
# 训练模型
train_generator = train_datagen.flow_from_dataframe(
dataframe=train_data,
directory=train_dir,
x_col="id",
y_col="label",
target_size=(224, 224),
batch_size=32,
class_mode='binary'
)
test_generator = test_datagen.flow_from_dataframe(
dataframe=test_data,
directory=test_dir,
x_col="id",
y_col="label",
target_size=(224, 224),
batch_size=32,
class_mode='binary'
)
model.fit_generator(
train_generator,
steps_per_epoch=len(train_generator),
epochs=10,
validation_data=test_generator,
validation_steps=len(test_generator)
)
# 评估模型
test_loss, test_acc = model.evaluate_generator(test_generator, steps=len(test_generator))
print('Test accuracy:', test_acc)
```
在此示例中,我们使用了预训练的 ResNet50 模型来提取特征并训练一个简单的二元分类器,以根据医学影像对其进行评分。在训练过程中,我们使用了 Keras 中的 ImageDataGenerator 来生成在训练期间需要的批量图像。我们还使用了 Pandas 库来加载 CSV 文件中的标签。
阅读全文