def val(dataloader, model, loss_fn): size = len(dataloader.dataset) num_batches = len(dataloader) model.eval() val_loss, correct = 0, 0 with torch.no_grad(): for X, y in dataloader: X, y = X.to(device), y.to(device) pred = model(X) val_loss += loss_fn(pred, y).item() correct += (pred.argmax(1) == y).type(torch.float).sum().item() val_loss /= num_batches correct /= size print(f"val Error: \n Accuracy: {(100*correct):>0.1f}%, Avg loss: {val_loss:>8f} \n

时间: 2024-04-19 07:26:12 浏览: 22
这段代码是用于在验证集上评估模型性能的函数。让我来解释一下它的功能: - `dataloader`:数据加载器,用于迭代验证集数据。 - `model`:模型,即你构建的卷积神经网络模型。 - `loss_fn`:损失函数,用于计算预测值与真实值之间的误差。 以下是函数的主要步骤: 1. 获取验证集的大小和批次数量,并将模型设置为评估模式。 2. 使用`torch.no_grad()`上下文管理器,禁用梯度计算,因为在验证过程中不需要更新模型参数。 3. 迭代数据加载器中的每个批次,其中`X`是输入图像,`y`是对应的标签。 4. 将数据和标签移动到设备(如GPU)上进行计算。 5. 计算模型对输入图像的预测,并使用损失函数计算预测误差。 6. 累积验证集损失和正确预测的数量,以便后续计算平均损失和准确率。 7. 计算平均验证集损失和准确率,并打印出来。 这个函数用于在验证集上评估模型的性能,并打印出验证准确率和平均损失。与训练函数类似,你可以根据需要进行调整和修改。
相关问题

train_dataset = ImageFolder(root="./train", transform=transform) train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True) val_dataset = ImageFolder(root="./val", transform=transform) val_loader = DataLoader(val_dataset, batch_size=batch_size, shuffle=False) test_dataset = ImageFolder(root="./test", transform=transform) test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)怎么改写为本地C盘的文件

假设你的训练数据存储在 C 盘的 train 文件夹中,验证数据存储在 C 盘的 val 文件夹中,测试数据存储在 C 盘的 test 文件夹中,可以将代码改写如下: ``` train_dataset = ImageFolder(root="C:/train", transform=transform) train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True) val_dataset = ImageFolder(root="C:/val", transform=transform) val_loader = DataLoader(val_dataset, batch_size=batch_size, shuffle=False) test_dataset = ImageFolder(root="C:/test", transform=transform) test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False) ``` 需要注意的是,Windows 系统下路径分隔符为反斜杠 `\`,但在 Python 中需要使用正斜杠 `/`,或者使用原始字符串(加上 `r` 前缀)表示路径,以避免转义字符的影响。

为每句代码做注释:flower_list = train_dataset.class_to_idx cla_dict = dict((val, key) for key, val in flower_list.items()) json_str = json.dumps(cla_dict, indent=4) with open('class_indices.json', 'w') as json_file: json_file.write(json_str) batch_size = 16 nw = min([os.cpu_count(), batch_size if batch_size > 1 else 0, 8]) print('Using {} dataloader workers every process'.format(nw)) train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size, shuffle=True, num_workers=0) validate_dataset = datasets.ImageFolder(root=os.path.join(image_path, "val"), transform=data_transform["val"]) val_num = len(validate_dataset) validate_loader = torch.utils.data.DataLoader(validate_dataset, batch_size=batch_size, shuffle=False, num_workers=0) print("using {} images for training, {} images for validation.".format(train_num, val_num))

# 创建一个包含所有花的列表,列表中每个元素都是一种花的类别索引 flower_list = train_dataset.class_to_idx # 将key和value互换位置,将花的类别索引转换为花的名称 cla_dict = dict((val, key) for key, val in flower_list.items()) # 将字典转换为json格式的字符串 json_str = json.dumps(cla_dict, indent=4) # 将json字符串写入文件class_indices.json中 with open('class_indices.json', 'w') as json_file: json_file.write(json_str) # 设置批大小为16,设置dataloader的worker数量,确保不超过CPU核心数和批大小 batch_size = 16 nw = min([os.cpu_count(), batch_size if batch_size > 1 else 0, 8]) print('Using {} dataloader workers every process'.format(nw)) # 创建训练集dataloader train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size, shuffle=True, num_workers=0) # 创建验证集dataset和dataloader validate_dataset = datasets.ImageFolder(root=os.path.join(image_path, "val"), transform=data_transform["val"]) val_num = len(validate_dataset) validate_loader = torch.utils.data.DataLoader(validate_dataset, batch_size=batch_size, shuffle=False, num_workers=0) # 打印训练集和验证集的图片数量 print("using {} images for training, {} images for validation.".format(train_num, val_num))

相关推荐

帮我把下面这个代码从TensorFlow改成pytorch import tensorflow as tf import os import numpy as np import matplotlib.pyplot as plt os.environ["CUDA_VISIBLE_DEVICES"] = "0" base_dir = 'E:/direction/datasetsall/' train_dir = os.path.join(base_dir, 'train_img/') validation_dir = os.path.join(base_dir, 'val_img/') train_cats_dir = os.path.join(train_dir, 'down') train_dogs_dir = os.path.join(train_dir, 'up') validation_cats_dir = os.path.join(validation_dir, 'down') validation_dogs_dir = os.path.join(validation_dir, 'up') batch_size = 64 epochs = 50 IMG_HEIGHT = 128 IMG_WIDTH = 128 num_cats_tr = len(os.listdir(train_cats_dir)) num_dogs_tr = len(os.listdir(train_dogs_dir)) num_cats_val = len(os.listdir(validation_cats_dir)) num_dogs_val = len(os.listdir(validation_dogs_dir)) total_train = num_cats_tr + num_dogs_tr total_val = num_cats_val + num_dogs_val train_image_generator = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1. / 255) validation_image_generator = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1. / 255) train_data_gen = train_image_generator.flow_from_directory(batch_size=batch_size, directory=train_dir, shuffle=True, target_size=(IMG_HEIGHT, IMG_WIDTH), class_mode='categorical') val_data_gen = validation_image_generator.flow_from_directory(batch_size=batch_size, directory=validation_dir, target_size=(IMG_HEIGHT, IMG_WIDTH), class_mode='categorical') sample_training_images, _ = next(train_data_gen) model = tf.keras.models.Sequential([ tf.keras.layers.Conv2D(16, 3, padding='same', activation='relu', input_shape=(IMG_HEIGHT, IMG_WIDTH, 3)), tf.keras.layers.MaxPooling2D(), tf.keras.layers.Conv2D(32, 3, padding='same', activation='relu'), tf.keras.layers.MaxPooling2D(), tf.keras.layers.Conv2D(64, 3, padding='same', activation='relu'), tf.keras.layers.MaxPooling2D(), tf.keras.layers.Flatten(), tf.keras.layers.Dense(256, activation='relu'), tf.keras.layers.Dense(2, activation='softmax') ]) model.compile(optimizer='adam', loss=tf.keras.losses.BinaryCrossentropy(from_logits=True), metrics=['accuracy']) model.summary() history = model.fit_generator( train_data_gen, steps_per_epoch=total_train // batch_size, epochs=epochs, validation_data=val_data_gen, validation_steps=total_val // batch_size ) # 可视化训练结果 acc = history.history['accuracy'] val_acc = history.history['val_accuracy'] loss = history.history['loss'] val_loss = history.history['val_loss'] epochs_range = range(epochs) model.save("./model/timo_classification_128_maxPool2D_dense256.h5")

给你提供了完整代码,但在运行以下代码时出现上述错误,该如何解决?Batch_size = 9 DataSet = DataSet(np.array(x_train), list(y_train)) train_size = int(len(x_train)*0.8) test_size = len(y_train) - train_size train_dataset, test_dataset = torch.utils.data.random_split(DataSet, [train_size, test_size]) TrainDataloader = Data.DataLoader(train_dataset, batch_size=Batch_size, shuffle=False, drop_last=True) TestDataloader = Data.DataLoader(test_dataset, batch_size=Batch_size, shuffle=False, drop_last=True) model = Transformer(n_encoder_inputs=3, n_decoder_inputs=3, Sequence_length=1).to(device) epochs = 10 optimizer = torch.optim.Adam(model.parameters(), lr=0.0001) criterion = torch.nn.MSELoss().to(device) val_loss = [] train_loss = [] best_best_loss = 10000000 for epoch in tqdm(range(epochs)): train_epoch_loss = [] for index, (inputs, targets) in enumerate(TrainDataloader): inputs = torch.tensor(inputs).to(device) targets = torch.tensor(targets).to(device) inputs = inputs.float() targets = targets.float() tgt_in = torch.rand((Batch_size, 1, 3)) outputs = model(inputs, tgt_in) loss = criterion(outputs.float(), targets.float()) print("loss", loss) loss.backward() optimizer.step() train_epoch_loss.append(loss.item()) train_loss.append(np.mean(train_epoch_loss)) val_epoch_loss = _test() val_loss.append(val_epoch_loss) print("epoch:", epoch, "train_epoch_loss:", train_epoch_loss, "val_epoch_loss:", val_epoch_loss) if val_epoch_loss < best_best_loss: best_best_loss = val_epoch_loss best_model = model print("best_best_loss ---------------------------", best_best_loss) torch.save(best_model.state_dict(), 'best_Transformer_trainModel.pth')

def get_data_loader(): # 训练配置参数 batch_size = CONFIG['batch_size'] thread_num = CONFIG['thread_num'] # Dataset 参数 train_csv = CONFIG['train_csv'] val_csv = CONFIG['val_csv'] audio_root = CONFIG['audio_root'] cache_root = CONFIG['cache_root'] # Dataset 基础参数 mix_name = CONFIG['mix_name'] instrument_list = CONFIG['instrument_list'] sample_rate = CONFIG['sample_rate'] channels = CONFIG['channels'] frame_length = CONFIG['frame_length'] frame_step = CONFIG['frame_step'] segment_length = CONFIG['segment_length'] frequency_bins = CONFIG['frequency_bins'] train_dataset = MusicDataset(mix_name, instrument_list, train_csv, audio_root, cache_root, sample_rate, channels, frame_length, frame_step, segment_length, frequency_bins) train_dataloader = data.DataLoader(train_dataset, batch_size=batch_size, shuffle=True, num_workers=thread_num, drop_last=True, collate_fn=collate_fn, worker_init_fn=lambda work_id: random.seed(torch.initial_seed() & 0xffffffff))#worker_init_fn=lambda work_id: random.seed(torch.initial_seed() & 0xffffffff)) val_dataset = MusicDataset(mix_name, instrument_list, val_csv, audio_root, cache_root, sample_rate, channels, frame_length, frame_step, segment_length, frequency_bins) val_dataloader = data.DataLoader(val_dataset, batch_size=batch_size, shuffle=False, num_workers=thread_num, drop_last=False, collate_fn=collate_fn, worker_init_fn=lambda work_id: random.seed(torch.initial_seed() & 0xffffffff))#worker_init_fn=lambda work_id: random.seed(torch.initial_seed() & 0xffffffff)) return train_dataloader, val_dataloader 这段代码有问题吗

最新推荐

recommend-type

解决keras,val_categorical_accuracy:,0.0000e+00问题

主要介绍了解决keras,val_categorical_accuracy:,0.0000e+00问题,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
recommend-type

node-v18.18.2-headers.tar.xz

Node.js,简称Node,是一个开源且跨平台的JavaScript运行时环境,它允许在浏览器外运行JavaScript代码。Node.js于2009年由Ryan Dahl创立,旨在创建高性能的Web服务器和网络应用程序。它基于Google Chrome的V8 JavaScript引擎,可以在Windows、Linux、Unix、Mac OS X等操作系统上运行。 Node.js的特点之一是事件驱动和非阻塞I/O模型,这使得它非常适合处理大量并发连接,从而在构建实时应用程序如在线游戏、聊天应用以及实时通讯服务时表现卓越。此外,Node.js使用了模块化的架构,通过npm(Node package manager,Node包管理器),社区成员可以共享和复用代码,极大地促进了Node.js生态系统的发展和扩张。 Node.js不仅用于服务器端开发。随着技术的发展,它也被用于构建工具链、开发桌面应用程序、物联网设备等。Node.js能够处理文件系统、操作数据库、处理网络请求等,因此,开发者可以用JavaScript编写全栈应用程序,这一点大大提高了开发效率和便捷性。 在实践中,许多大型企业和组织已经采用Node.js作为其Web应用程序的开发平台,如Netflix、PayPal和Walmart等。它们利用Node.js提高了应用性能,简化了开发流程,并且能更快地响应市场需求。
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

可见光定位LED及其供电硬件具体型号,广角镜头和探测器,实验设计具体流程步骤,

1. 可见光定位LED型号:一般可使用5mm或3mm的普通白色LED,也可以选择专门用于定位的LED,例如OSRAM公司的SFH 4715AS或Vishay公司的VLMU3500-385-120。 2. 供电硬件型号:可以使用常见的直流电源供电,也可以选择专门的LED驱动器,例如Meanwell公司的ELG-75-C或ELG-150-C系列。 3. 广角镜头和探测器型号:一般可采用广角透镜和CMOS摄像头或光电二极管探测器,例如Omron公司的B5W-LA或Murata公司的IRS-B210ST01。 4. 实验设计流程步骤: 1)确定实验目的和研究对象,例如车辆或机器人的定位和导航。
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这
recommend-type

解释这行代码 c = ((double)rand() / RAND_MAX) * (a + b - fabs(a - b)) + fabs(a - b);

这行代码的作用是随机生成一个浮点数,范围在 a 和 b 之间(包括 a 和 b)。 其中,`rand()` 函数是 C 语言标准库中的一个函数,用于生成一个伪随机整数。`RAND_MAX` 是一个常量,它表示 `rand()` 函数生成的随机数的最大值。 因此,`(double)rand() / RAND_MAX` 表示生成的随机数在 [0, 1] 之间的浮点数。 然后,将这个随机数乘上 `(a - b) - fabs(a - b)`,再加上 `fabs(a - b)`。 `fabs(a - b)` 是 C 语言标准库中的一个函数,用于计算一个数的绝对值。因此,`fabs(a - b)