yolov5 数据增强代码实现
时间: 2024-04-08 19:28:00 浏览: 116
Yolov5是一种目标检测算法,用于实现实时目标检测任务。数据增强是在训练过程中对原始数据进行一系列变换和扩充,以增加数据的多样性和数量,从而提高模型的泛化能力。下面是一个示例的Yolov5数据增强代码实现:
```python
import albumentations as A
from albumentations.pytorch import ToTensorV2
def get_train_transforms():
return A.Compose(
[
A.RandomSizedBBoxSafeCrop(512, 512, erosion_rate=0.0, interpolation=1, p=1.0),
A.HorizontalFlip(p=0.5),
A.VerticalFlip(p=0.5),
A.RandomRotate90(p=0.5),
A.Blur(blur_limit=3, p=0.5),
A.ColorJitter(p=0.5),
A.Normalize(),
ToTensorV2(),
],
bbox_params=A.BboxParams(format='yolo', label_fields=['category_ids']),
)
def get_valid_transforms():
return A.Compose(
[
A.Resize(512, 512),
A.Normalize(),
ToTensorV2(),
],
bbox_params=A.BboxParams(format='yolo', label_fields=['category_ids']),
)
```
上述代码使用了Albumentations库来实现数据增强。其中,`get_train_transforms`函数定义了训练集的数据增强方式,包括随机裁剪、水平翻转、垂直翻转、随机旋转、模糊处理、颜色调整和归一化等操作。`get_valid_transforms`函数定义了验证集的数据增强方式,包括调整大小和归一化操作。
阅读全文