编写代码使得monodepth2模型可以实时进行深度估计
时间: 2024-05-02 12:23:19 浏览: 163
可以使用Python语言编写代码来实现这一功能。具体实现步骤如下:
1.下载并安装所需的Python包,包括monodepth2, OpenCV和PyTorch等。
2.加载预训练的monodepth2模型。
3.通过调用摄像头或视频流捕获实时图像。
4.将图像输入monodepth2模型进行深度估计。
5.使用OpenCV库显示深度图像。
下面是代码示例:
```
import cv2
import torch
from torchvision.transforms import Compose
from monodepth2.transforms import Resize, NormalizeImage, ToTensor
from monodepth2.models import Monodepth2Model
#加载模型
model_path = "path/to/monodepth2/model"
model = Monodepth2Model()
model.load_state_dict(torch.load(model_path))
model.eval()
model.cuda()
#设置预处理转换
preprocess = Compose([
Resize(
640,
192,
resize_target=None,
keep_aspect_ratio=True,
ensure_multiple_of=32,
resize_method="upper_bound",
image_interpolation_method=cv2.INTER_CUBIC,
),
NormalizeImage(),
ToTensor(),
])
transform = Compose([preprocess])
#设置摄像头或视频流捕获
cap = cv2.VideoCapture(0)
while True:
ret, frame = cap.read()
if not ret:
continue
#图像预处理
input_image = transform({"image": frame})["image"].cuda()
#通过monodepth2模型进行深度估计
with torch.no_grad():
output = model.forward(input_image)
disp = output[("disp", 0)].squeeze().cpu().numpy()
disp_resized = cv2.resize(disp, (frame.shape[1], frame.shape[0]))
#显示深度图像
cv2.imshow("Depth Estimation", disp_resized)
if cv2.waitKey(1) == ord("q"):
break
cap.release()
cv2.destroyAllWindows()
```
阅读全文
相关推荐













