accuracy_fn = nn.MSELoss() accuracy = accuracy_fn(predict, label) accuracy_list.append(accuracy.item())
时间: 2023-11-01 10:08:05 浏览: 136
这段代码使用了PyTorch中的nn.MSELoss()函数计算模型的均方误差(MSE),即预测值与真实值之间的差异平方和的平均值。然后将计算得到的均方误差存储到列表accuracy_list中。
其中,predict表示模型的预测值,label表示真实值。accuracy_fn接收predict和label两个参数,计算它们之间的均方误差并返回一个标量。accuracy.item()将计算得到的均方误差转换成一个Python数字,然后将其添加到accuracy_list中。
需要注意的是,均方误差越小,表示模型的预测越准确。因此,accuracy_list中的数值越小,表示模型的预测越接近真实值。
相关问题
修正以下代码ntr, u, u0, d, jm, p, fpc = fuzz.cluster.cmeans(train_X.T, 3, 2, error=0.005, maxiter=1000, init=None) train_u, _, _, _, _, _, = fuzz.cluster.cmeans_predict(train_X.T, cntr, 2, error=0.005, maxiter=1000) train_predictions = np.argmax(train_u, axis=0) train_accuracy = accuracy_score(train_y, train_predictions) print(train_y) print(train_predictions) train_y = np.array(train_y) train_u = np.array(train_u) train_auc = roc_auc_score(train_y, train_u, multi_class='ovo') loss = np.sum((train_u - train_y) ** 2) loss_curve.append(loss) accuracy_curve.append(train_accuracy) auc_curve.append(train_auc)
修正后的代码如下:
```
cntr, u, u0, d, jm, p, fpc = fuzz.cluster.cmeans(train_X.T, 3, 2, error=0.005, maxiter=1000, init=None)
train_u, _, _, _, _, _, = fuzz.cluster.cmeans_predict(train_X.T, cntr, 2, error=0.005, maxiter=1000)
train_predictions = np.argmax(train_u, axis=0)
train_accuracy = accuracy_score(train_y, train_predictions)
print(train_y)
print(train_predictions)
train_y = np.array(train_y)
train_u = np.array(train_u)
train_auc = roc_auc_score(train_y, train_u.T, multi_class='ovo')
loss = np.sum((train_u - train_y.reshape(-1,1)) ** 2)
loss_curve.append(loss)
accuracy_curve.append(train_accuracy)
auc_curve.append(train_auc)
```
主要修改了两处错误:
1. 在计算 ROC AUC 时,需要将 `train_u` 转置,而且 `train_y` 和 `train_u` 都应该是二维数组。
2. 在计算 loss 时,需要将 `train_y` 改为二维数组,并且使用 `reshape` 方法将其转换为列向量。同时,因为两个数组的形状不同,需要使用广播机制进行计算。
修正以下代码cntr, u, u0, d, jm, p, fpc = fuzz.cluster.cmeans(train_X.T, 3, 2, error=0.005, maxiter=1000, init=None) train_u, _, _, _, _, _, = fuzz.cluster.cmeans_predict(train_X.T, cntr, 2, error=0.005, maxiter=1000) train_predictions = np.argmax(train_u, axis=0) train_accuracy = accuracy_score(train_y, train_predictions) print(train_y) print(train_predictions) train_y = np.array(train_y) train_u = np.array(train_u) train_auc = roc_auc_score(train_y, train_u.T, multi_class='ovo') loss = np.sum((train_u - train_y.reshape(-1,1)) ** 2) loss_curve.append(loss) accuracy_curve.append(train_accuracy) auc_curve.append(train_auc)
这段代码看起来是使用模糊聚类算法(Fuzzy C-Means)对训练数据进行聚类,并计算训练数据的准确率、AUC以及损失函数。不过代码有一点小问题,应该按照以下方式进行修正:
```python
cntr, u, u0, d, jm, p, fpc = fuzz.cluster.cmeans(train_X.T, 3, 2, error=0.005, maxiter=1000, init=None)
train_u, _, _, _, _, _, = fuzz.cluster.cmeans_predict(train_X.T, cntr, 2, error=0.005, maxiter=1000)
train_predictions = np.argmax(train_u, axis=0)
train_y = np.array(train_y)
train_accuracy = accuracy_score(train_y, train_predictions)
print(train_y)
print(train_predictions)
train_auc = roc_auc_score(train_y, train_u.T, multi_class='ovo')
loss = np.sum((train_u - train_y.reshape(-1,1)) ** 2)
loss_curve.append(loss)
accuracy_curve.append(train_accuracy)
auc_curve.append(train_auc)
```
主要的修改包括:
1. 将 `train_y` 转换为 `numpy` 数组类型。
2. 将计算准确率 `train_accuracy` 的位置调整到 `train_predictions` 后面。
3. 将 `train_auc` 的计算放在 `train_accuracy` 后面,因为需要使用 `train_u`。
4. 将 `loss_curve`、`accuracy_curve` 和 `auc_curve` 的更新放在最后。
阅读全文