用代码获取数据集fashion
时间: 2023-05-18 20:02:00 浏览: 165
python 实现fashion数据集分类
获取fashion数据集需要以下步骤:
1. 从fashion数据集的官方网站下载数据集,链接:https://www.kaggle.com/zalando-research/fashionmnist
2. 安装必要的库和框架,如tensorflow、numpy、matplotlib等。
3. 使用python代码读取数据集。从Kaggle下载的数据集包含4个文件:train-images-idx3-ubyte.gz、train-labels-idx1-ubyte.gz、t10k-images-idx3-ubyte.gz、t10k-labels-idx1-ubyte.gz。数据集由训练数据和测试数据组成,每个数据包含一个28*28像素的灰度图像和标签,共10个类别。
4. 使用numpy库和gzip库将下载的数据集文件进行解压和处理。
5. 使用tensorflow库将数据集读取为tf.data.Dataset格式,以便于后续训练和验证。
代码示例:
```python
import tensorflow as tf
import numpy as np
import gzip
import os
# 下载数据集并解压
def load_data():
base_dir = 'data'
if not os.path.exists(base_dir):
os.makedirs(base_dir)
urls = [
'http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/train-images-idx3-ubyte.gz',
'http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/train-labels-idx1-ubyte.gz',
'http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/t10k-images-idx3-ubyte.gz',
'http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/t10k-labels-idx1-ubyte.gz'
]
for url in urls:
response = urllib.request.urlopen(url)
filename = os.path.join(base_dir, os.path.basename(url))
with open(filename, 'wb') as f:
f.write(response.read())
print(f"{filename} downloaded")
return (base_dir + '/train-images-idx3-ubyte.gz',
base_dir + '/train-labels-idx1-ubyte.gz',
base_dir + '/t10k-images-idx3-ubyte.gz',
base_dir + '/t10k-labels-idx1-ubyte.gz')
# 载入数据
def load_data(path):
with gzip.open(path, 'rb') as f:
data = np.frombuffer(f.read(), np.uint8, offset=16)
return data.reshape(-1, 28, 28, 1)
# 处理数据
def preprocess_data(data):
data = tf.cast(data, tf.float32)
data = data / 255.0
return data
# 读取数据
def load_dataset():
(train_images_path, train_labels_path, test_images_path, test_labels_path) = load_data()
train_images = load_data(train_images_path)
train_labels = load_data(train_labels_path)
test_images = load_data(test_images_path)
test_labels = load_data(test_labels_path)
train_images = preprocess_data(train_images)
test_images = preprocess_data(test_images)
train_dataset = tf.data.Dataset.from_tensor_slices((train_images, train_labels))
test_dataset = tf.data.Dataset.from_tensor_slices((test_images, test_labels))
return train_dataset, test_dataset
# 调用函数进行读取
train_dataset, test_dataset = load_dataset()
# 检查是否成功载入
for image, label in train_dataset.take(1):
print("Image shape: ", image.numpy().shape)
print("Label: ", label.numpy())
```
阅读全文