用python写一个DDPG算法案例并且给每条语句添加注释
时间: 2024-03-15 14:46:32 浏览: 64
基于MADDPG的多智能体博弈对抗算法python实现项目源码+代码注释.zip
5星 · 资源好评率100%
好的,以下是一个用Python实现DDPG算法的案例,并添加了注释以方便理解:
```python
# 导入必要的库
import tensorflow as tf
import numpy as np
import gym
# 定义Actor和Critic网络结构
class Actor(object):
def __init__(self, sess, state_dim, action_dim, action_bound):
self.sess = sess
self.state_dim = state_dim
self.action_dim = action_dim
self.action_bound = action_bound
# 创建Actor网络
self.inputs, self.out = self.create_actor_network()
# 创建Actor目标网络
self.target_inputs, self.target_out = self.create_actor_network()
# 定义Actor网络参数更新操作
self.actor_params = tf.trainable_variables()
# 定义Actor目标网络更新操作
self.target_actor_params = tf.trainable_variables()[len(self.actor_params):]
# 创建Actor梯度操作
self.action_gradient = tf.placeholder(tf.float32, [None, self.action_dim])
self.actor_gradients = tf.gradients(self.out, self.actor_params, -self.action_gradient)
# 定义Actor参数更新操作
self.optimizer = tf.train.AdamOptimizer(0.0001).apply_gradients(zip(self.actor_gradients, self.actor_params))
# 创建Actor网络
def create_actor_network(self):
inputs = tf.placeholder(tf.float32, [None, self.state_dim])
w1 = tf.Variable(tf.random_normal([self.state_dim, 64]))
b1 = tf.Variable(tf.random_normal([64]))
l1 = tf.nn.relu(tf.matmul(inputs, w1) + b1)
w2 = tf.Variable(tf.random_normal([64, self.action_dim]))
b2 = tf.Variable(tf.random_normal([self.action_dim]))
out = tf.nn.tanh(tf.matmul(l1, w2) + b2)
scaled_out = tf.multiply(out, self.action_bound)
return inputs, scaled_out
# 训练Actor网络
def train(self, inputs, a_gradient):
self.sess.run(self.optimizer, feed_dict={
self.inputs: inputs,
self.action_gradient: a_gradient
})
# 更新Actor目标网络
def update_target_network(self):
self.sess.run([self.target_actor_params[i].assign(tf.multiply(self.actor_params[i], 0.1) +
tf.multiply(self.target_actor_params[i], 0.9))
for i in range(len(self.target_actor_params))])
# 预测Actor输出结果
def predict(self, inputs):
return self.sess.run(self.out, feed_dict={
self.inputs: inputs
})
# 预测Actor目标输出结果
def predict_target(self, inputs):
return self.sess.run(self.target_out, feed_dict={
self.target_inputs: inputs
})
class Critic(object):
def __init__(self, sess, state_dim, action_dim):
self.sess = sess
self.state_dim = state_dim
self.action_dim = action_dim
# 创建Critic网络
self.inputs, self.action, self.out = self.create_critic_network()
# 创建Critic目标网络
self.target_inputs, self.target_action, self.target_out = self.create_critic_network()
# 定义Critic网络参数更新操作
self.critic_params = tf.trainable_variables()[len(self.action_dim):]
# 定义Critic目标网络更新操作
self.target_critic_params = tf.trainable_variables()[(len(self.action_dim) + len(self.critic_params)):]
# 创建Critic目标Q值
self.predicted_q_value = tf.placeholder(tf.float32, [None, 1])
# 定义Critic网络损失函数
self.loss = tf.reduce_mean(tf.square(self.predicted_q_value - self.out))
# 定义Critic网络更新操作
self.optimizer = tf.train.AdamOptimizer(0.001).minimize(self.loss)
# 定义Critic网络梯度操作
self.action_grads = tf.gradients(self.out, self.action)
# 创建Critic网络
def create_critic_network(self):
inputs = tf.placeholder(tf.float32, [None, self.state_dim])
action = tf.placeholder(tf.float32, [None, self.action_dim])
w1 = tf.Variable(tf.random_normal([self.state_dim, 64]))
b1 = tf.Variable(tf.random_normal([64]))
l1 = tf.nn.relu(tf.matmul(inputs, w1) + b1)
w2 = tf.Variable(tf.random_normal([64, self.action_dim]))
a2 = tf.Variable(tf.random_normal([self.action_dim]))
l2 = tf.matmul(l1, w2) + tf.matmul(action, a2)
w3 = tf.Variable(tf.random_normal([self.action_dim, 1]))
b3 = tf.Variable(tf.random_normal([1]))
out = tf.matmul(l2, w3) + b3
return inputs, action, out
# 训练Critic网络
def train(self, inputs, action, predicted_q_value):
return self.sess.run([self.out, self.optimizer], feed_dict={
self.inputs: inputs,
self.action: action,
self.predicted_q_value: predicted_q_value
})
# 更新Critic目标网络
def update_target_network(self):
self.sess.run([self.target_critic_params[i].assign(tf.multiply(self.critic_params[i], 0.1) +
tf.multiply(self.target_critic_params[i], 0.9))
for i in range(len(self.target_critic_params))])
# 预测Critic输出结果
def predict(self, inputs, action):
return self.sess.run(self.out, feed_dict={
self.inputs: inputs,
self.action: action
})
# 计算Critic网络梯度
def action_gradients(self, inputs, actions):
return self.sess.run(self.action_grads, feed_dict={
self.inputs: inputs,
self.action: actions
})
# 定义DDPG算法
class DDPG(object):
def __init__(self, state_dim, action_dim, action_bound):
# 初始化参数
self.state_dim = state_dim
self.action_dim = action_dim
self.action_bound = action_bound
# 创建Actor和Critic网络
self.sess = tf.Session()
self.actor = Actor(self.sess, self.state_dim, self.action_dim, self.action_bound)
self.critic = Critic(self.sess, self.state_dim, self.action_dim)
# 初始化Actor和Critic目标网络
self.actor.update_target_network()
self.critic.update_target_network()
# 初始化replay buffer
self.buffer_size = 1000000
self.buffer = ReplayBuffer(self.buffer_size)
# 定义DDPG参数
self.batch_size = 64
self.gamma = 0.99
self.tau = 0.001
# 定义添加replay buffer操作
def add_buffer(self, state, action, reward, next_state, done):
self.buffer.add(state, action, reward, next_state, done)
# 定义选择动作操作
def choose_action(self, state):
return self.actor.predict(np.reshape(state, (1, self.state_dim))) + \
np.random.normal(0, self.action_bound / 10, size=self.action_dim)
# 定义训练操作
def train(self):
# 从replay buffer中随机抽取样本
batch_state, batch_action, batch_reward, batch_next_state, batch_done = self.buffer.sample(self.batch_size)
# 计算目标Q值
target_action = self.actor.predict_target(batch_next_state)
target_q_value = self.critic.predict_target(batch_next_state, target_action)
y_i = []
for k in range(self.batch_size):
if batch_done[k]:
y_i.append(batch_reward[k])
else:
y_i.append(batch_reward[k] + self.gamma * target_q_value[k])
# 训练Critic网络
predicted_q_value, _ = self.critic.train(batch_state, batch_action, np.reshape(y_i, (self.batch_size, 1)))
# 计算Actor梯度
action_out = self.actor.predict(batch_state)
grads = self.critic.action_gradients(batch_state, action_out)
# 训练Actor网络
self.actor.train(batch_state, grads[0])
# 更新Actor和Critic目标网络
self.actor.update_target_network()
self.critic.update_target_network()
# 定义保存模型操作
def save_model(self):
saver = tf.train.Saver()
saver.save(self.sess, "./model/model.ckpt")
# 定义加载模型操作
def load_model(self):
saver = tf.train.Saver()
saver.restore(self.sess, "./model/model.ckpt")
# 定义replay buffer
class ReplayBuffer(object):
def __init__(self, buffer_size):
self.buffer_size = buffer_size
self.buffer = []
# 添加样本到replay buffer
def add(self, state, action, reward, next_state, done):
if len(self.buffer) + 1 >= self.buffer_size:
self.buffer[0:(1 + len(self.buffer)) - self.buffer_size] = []
self.buffer.append((state, action, reward, next_state, done))
# 随机抽取一个batch的样本
def sample(self, batch_size):
batch = []
for i in range(batch_size):
batch.append(self.buffer[np.random.randint(0, len(self.buffer))])
batch_state = np.array([_[0] for _ in batch])
batch_action = np.array([_[1] for _ in batch])
batch_reward = np.array([_[2] for _ in batch])
batch_next_state = np.array([_[3] for _ in batch])
batch_done = np.array([_[4] for _ in batch])
return batch_state, batch_action, batch_reward, batch_next_state, batch_done
# 运行DDPG算法
def run_ddpg():
# 初始化gym环境
env = gym.make("Pendulum-v0")
state_dim = env.observation_space.shape[0]
action_dim = env.action_space.shape[0]
action_bound = env.action_space.high[0]
# 创建DDPG算法
ddpg = DDPG(state_dim, action_dim, action_bound)
# 定义训练参数
episodes = 5000
steps = 200
for i in range(episodes):
state = env.reset()
total_reward = 0
for j in range(steps):
# 选择动作
action = ddpg.choose_action(state)
# 执行动作
next_state, reward, done, info = env.step(action)
# 添加样本到replay buffer
ddpg.add_buffer(state, action, reward, next_state, done)
# 如果replay buffer中样本数量大于batch size,则开始训练
if len(ddpg.buffer.buffer) > ddpg.batch_size:
ddpg.train()
# 更新状态和奖励
state = next_state
total_reward += reward
# 如果游戏结束,则输出结果
if done:
print("Episode:", i, "Reward:", total_reward)
break
# 保存模型
ddpg.save_model()
```
以上就是一个用Python实现DDPG算法的案例,并添加了注释以方便理解。
阅读全文