video.to_videofile
时间: 2024-02-28 20:48:11 浏览: 76
video.to_videofile 是 MoviePy 库中的一个方法,用于将视频文件保存为指定格式的文件。该方法需要传入两个参数:文件名和格式。例如,video.to_videofile("output.mp4", fps=25) 将视频保存为 MP4 格式的文件,并以 25 帧每秒的速度播放。
相关问题
processor_cfg: type: "processor.pose_demo.inference" gpus: 1 worker_per_gpu: 1 video_file: resource/data_example/skateboarding.mp4 save_dir: "work_dir/pose_demo" detection_cfg: model_cfg: configs/mmdet/cascade_rcnn_r50_fpn_1x.py checkpoint_file: mmskeleton://mmdet/cascade_rcnn_r50_fpn_20e bbox_thre: 0.8 estimation_cfg: model_cfg: configs/pose_estimation/hrnet/pose_hrnet_w32_256x192_test.yaml checkpoint_file: mmskeleton://pose_estimation/pose_hrnet_w32_256x192 data_cfg: image_size: - 192 - 256 pixel_std: 200 image_mean: - 0.485 - 0.456 - 0.406 image_std: - 0.229 - 0.224 - 0.225 post_process: true argparse_cfg: gpus: bind_to: processor_cfg.gpus help: number of gpus video: bind_to: processor_cfg.video_file help: path to input video worker_per_gpu: bind_to: processor_cfg.worker_per_gpu help: number of workers for each gpu skeleton_model: bind_to: processor_cfg.estimation_cfg.model_cfg skeleton_checkpoint: bind_to: processor_cfg.estimation_cfg.checkpoint_file detection_model: bind_to: processor_cfg.detection_cfg.model_cfg detection_checkpoint: bind_to: processor_cfg.detection_cfg.checkpoint_file
根据您提供的配置文件,这是一个用于姿态估计的pose_demo的配置示例。该配置文件包括了处理器配置(processor_cfg)和命令行参数配置(argparse_cfg)。
处理器配置包括以下内容:
- type:指定处理器类型为"processor.pose_demo.inference",这可能是一个自定义的处理器类型。
- gpus:指定使用的GPU数量为1。
- worker_per_gpu:指定每个GPU的worker数量为1。
- video_file:指定输入视频的路径为"resource/data_example/skateboarding.mp4"。
- save_dir:指定结果保存的目录路径为"work_dir/pose_demo"。
检测配置(detection_cfg)包括以下内容:
- model_cfg:指定检测模型的配置文件路径为"configs/mmdet/cascade_rcnn_r50_fpn_1x.py"。
- checkpoint_file:指定检测模型的checkpoint路径为"mmskeleton://mmdet/cascade_rcnn_r50_fpn_20e"。
- bbox_thre:指定检测目标的边界框阈值为0.8。
估计配置(estimation_cfg)包括以下内容:
- model_cfg:指定姿态估计模型的配置文件路径为"configs/pose_estimation/hrnet/pose_hrnet_w32_256x192_test.yaml"。
- checkpoint_file:指定姿态估计模型的checkpoint路径为"mmskeleton://pose_estimation/pose_hrnet_w32_256x192"。
- data_cfg:指定姿态估计模型的数据配置,包括图像尺寸、像素标准化值、图像均值和标准差以及后处理选项。
命令行参数配置(argparse_cfg)包括了一些命令行参数的绑定,用于从命令行传递参数给处理器配置。
例如,您可以使用以下命令行参数来运行pose_demo:
```
python pose_demo.py --gpus 1 --video resource/data_example/skateboarding.mp4 --worker_per_gpu 1 --skeleton_model configs/pose_estimation/hrnet/pose_hrnet_w32_256x192_test.yaml --skeleton_checkpoint mmskeleton://pose_estimation/pose_hrnet_w32_256x192 --detection_model configs/mmdet/cascade_rcnn_r50_fpn_1x.py --detection_checkpoint mmskeleton://mmdet/cascade_rcnn_r50_fpn_20e
```
请注意,以上仅为示例,具体的使用方式和命令行参数可能会有所不同,具体取决于实际情况。
如果您有进一步的问题,请提供更多细节,我将尽力帮助您。
super(Ui_MainWindow, self).__init__(parent) parser_car_det = argparse.ArgumentParser() # parser.add_argument('--weights', type=str, default='weights-s/best1.pt', help='model.pt path') parser_car_det.add_argument('--weights', type=str, default='weights-s/best1.pt', help='model.pt path') parser_car_det.add_argument('--source', type=str, default='input/3.mp4', help='source') # file/folder, 0 for webcam # parser.add_argument('--source', type=str, default='rtsp://admin:hik12345@192.168.1.64:554//Streaming/Channels/101', help='source') # file/folder, 0 for webcam parser_car_det.add_argument('--output', type=str, default='inference/output', help='output folder') # output folder parser_car_det.add_argument('--img-size', type=int, default=640, help='inference size (pixels)') parser_car_det.add_argument('--conf-thres', type=float, default=0.4, help='object confidence threshold') parser_car_det.add_argument('--iou-thres', type=float, default=0.5, help='IOU threshold for NMS') parser_car_det.add_argument('--fourcc', type=str, default='mp4v', help='output video codec (verify ffmpeg support)') parser_car_det.add_argument('--device', default='cpu', help='cuda device, i.e. 0 or 0,1,2,3 or cpu') parser_car_det.add_argument('--view-img', action='store_true', help='display results') parser_car_det.add_argument('--save-txt', action='store_true', help='save results to *.txt') parser_car_det.add_argument('--classes', nargs='+', type=int, help='filter by class') parser_car_det.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS') parser_car_det.add_argument('--augment', action='store_true', help='augmented inference') parser_car_det.add_argument('--idx', default='2', help='idx') self.opt_car_det = parser_car_det.parse_args() self.opt_car_det.img_size = check_img_size(self.opt_car_det.img_size) half = 0 source_car_det, weights_car_det, view_img_car_det, save_txt_car_det, imgsz_car_det = self.opt_car_det.source, self.opt_car_det.weights, self.opt_car_det.view_img, self.opt_car_det.save_txt, self.opt_car_det.img_size self.device_car_det = torch_utils.select_device(self.opt_car_det.device) self.half_car_det = 0 # half precision only supported on CUDA cudnn.benchmark = True
super(Ui_MainWindow, self).__init__(parent) 表示使用父类的构造函数来初始化子类,这里父类是 Ui_MainWindow。
parser_car_det = argparse.ArgumentParser() 表示定义了一个解析器,用来解析输入的参数。
阅读全文