解释这段代码Training_y = np.eye(5)[Training_Output-1]

时间: 2024-05-31 07:08:14 浏览: 80
这段代码的作用是将一个大小为m的一维数组Training_Output中的每个元素转换为一个大小为n的one-hot编码向量,其中n为5。具体来说,np.eye(5)创建一个大小为5x5的单位矩阵,然后通过使用Training_Output-1作为索引,将每个元素转换为对应的one-hot编码向量。最终的结果是一个大小为(m, 5)的二维数组Training_y,其中每行表示一个one-hot编码向量。
相关问题

GCN代码分析 2019.03.12 22:34:54字数 560阅读 5714 本文主要对GCN源码进行分析。

### 回答1: GCN(Graph Convolutional Network)是一种基于图结构的深度学习模型,可以用于图像分类、社交网络分析等任务。在这篇文章中,我们将对GCN源码进行分析。 首先,我们需要了解GCN的基本原理。GCN是通过对图中的节点进行卷积操作来提取节点特征的。具体地,GCN的卷积操作可以定义为: $H^{(l+1)} = \sigma(\hat{D}^{-\frac{1}{2}}\hat{A}\hat{D}^{-\frac{1}{2}}H^{(l)}W^{(l)})$ 其中,$H^{(l)}$表示第$l$层节点特征矩阵,$W^{(l)}$表示第$l$层的权重矩阵,$\hat{A}$表示邻接矩阵加上自环的矩阵,$\hat{D}$表示度矩阵加上自环的矩阵,$\sigma$表示激活函数。 接下来,我们将对GCN源码进行分析。GCN的源码在GitHub上可以找到(https://github.com/tkipf/gcn)。我们将以GCN的Cora数据集为例进行分析。 首先,我们需要加载Cora数据集。GCN的数据集格式是一个包含特征矩阵、邻接矩阵和标签的对象。在GCN的源码中,我们可以看到以下代码: features = sp.identity(features.shape[0]) # featureless if not sparse: features = np.array(features.todense()) adj = adj + sp.eye(adj.shape[0]) degree = np.array(adj.sum(1)) d_inv_sqrt = np.power(degree, -0.5).flatten() d_inv_sqrt[np.isinf(d_inv_sqrt)] = 0. d_mat_inv_sqrt = sp.diags(d_inv_sqrt) adj = d_mat_inv_sqrt.dot(adj).dot(d_mat_inv_sqrt).tocoo() features = preprocess_features(features) 在这段代码中,我们首先将特征矩阵转化为稀疏矩阵的形式,然后加上自环,计算度矩阵和度矩阵的逆平方根,最后对邻接矩阵进行归一化处理。这些处理都是为了满足GCN的卷积操作。 接下来,我们来看GCN的具体实现。在GCN的源码中,我们可以看到以下代码: class GraphConvolution(nn.Module): def __init__(self, in_features, out_features, bias=True): super(GraphConvolution, self).__init__() self.in_features = in_features self.out_features = out_features self.weight = nn.Parameter(torch.FloatTensor(in_features, out_features)) if bias: self.bias = nn.Parameter(torch.FloatTensor(out_features)) else: self.register_parameter('bias', None) self.reset_parameters() def reset_parameters(self): stdv = 1. / math.sqrt(self.weight.size(1)) self.weight.data.uniform_(-stdv, stdv) if self.bias is not None: self.bias.data.uniform_(-stdv, stdv) def forward(self, input, adj): support = torch.mm(input, self.weight) output = torch.spmm(adj, support) if self.bias is not None: return output + self.bias else: return output 在这段代码中,我们定义了GraphConvolution类,它是GCN的基本单元。在初始化函数中,我们定义了权重矩阵和偏置,然后通过reset_parameters()函数对它们进行初始化。在正向传播函数中,我们首先对输入特征矩阵和权重矩阵进行矩阵乘法,然后对结果进行邻接矩阵的稀疏矩阵乘法,最后加上偏置(如果有)并返回输出。 最后,我们需要定义完整的GCN模型。在GCN的源码中,我们可以看到以下代码: class GCN(nn.Module): def __init__(self, nfeat, nhid, nclass, dropout): super(GCN, self).__init__() self.gc1 = GraphConvolution(nfeat, nhid) self.gc2 = GraphConvolution(nhid, nclass) self.dropout = dropout def forward(self, x, adj): x = F.relu(self.gc1(x, adj)) x = F.dropout(x, self.dropout, training=self.training) x = self.gc2(x, adj) return F.log_softmax(x, dim=1) 在这段代码中,我们定义了GCN类,它包含两个GraphConvolution层和一个dropout层。在正向传播函数中,我们首先对输入特征矩阵和邻接矩阵进行第一层卷积操作,然后对结果进行ReLU激活和dropout操作,最后再进行第二层卷积操作并返回输出。注意,GCN的输出需要进行log_softmax操作以得到预测结果。 以上就是对GCN源码的分析。希望这篇文章能够对理解GCN有所帮助。 ### 回答2: GCN(Graph Convolutional Network)是一种用于处理图数据的深度学习模型,它通过对节点进行卷积操作来学习节点的表示。 GCN源码主要包含以下几个重要的部分: 1. 数据准备:GCN需要将图数据转换为计算图的形式,一般需要将节点和边以矩阵的形式表示。源码中通常会包含数据加载、数据预处理和数据划分等步骤,以及将数据转换为GCN所需的格式。 2. 模型构建:源码中会定义GCN模型的结构和参数。一般来说,GCN模型由多个卷积层和池化层组成,其中每个卷积层将节点的特征进行卷积操作,并利用邻接矩阵来构建图的结构。模型的参数包括卷积核的大小和数量、激活函数的选择等。 3. 训练过程:源码中会定义训练过程的具体步骤,包括前向传播、计算损失函数、反向传播、优化器的选择和参数更新等。训练过程通常会使用mini-batch的方式,即每次使用一小部分的数据进行训练,以提高训练效率和模型性能。 4. 评估与测试:源码中会定义模型的评估和测试方法,一般会使用一些指标来衡量模型的性能,如准确率、召回率等。评估和测试过程可以帮助我们了解模型的泛化能力和有效性,指导我们对模型进行改进和优化。 对于GCN源码的分析,我们可以从以上几个方面进行深入研究,理解GCN模型的原理和实现细节。通过分析源码,可以更好地理解GCN的设计思想和优势,为进一步使用和改进GCN模型提供有力支持。 ### 回答3: GCN(Graph Convolutional Network)是一种用于处理图数据的深度学习模型,其核心思想是在图结构上进行卷积运算。下面对GCN的源码进行分析,使用中文。 GCN的源码分析可以从模型的整体结构和核心操作两个方面入手。 首先,模型的整体结构。GCN源码主要包含了图卷积层、权重更新、优化器等关键部分。核心操作是图卷积层的运算,它包括邻居节点特征的聚合、特征转换和激活函数的应用等步骤。 其次,核心操作的实现。GCN的关键是通过邻居节点特征的聚合来获得节点的新特征表示。具体实现中,可以使用邻接矩阵和节点特征矩阵进行计算,得到聚合特征。然后,利用聚合特征和权重矩阵进行特征转换,并通过激活函数获得最终的节点表示。此外,目标函数的定义和优化器的选择也对模型的训练效果有重要影响。 GCN源码分析的目标是深入理解模型的运行原理和关键步骤,可以从对网络结构的了解、核心操作的分析以及与相关论文的比较和验证等方面入手。同时,需要对Python编程语言和深度学习框架有一定的了解,以顺利理解和运行源码。 源码分析的结果可以帮助我们更好地理解GCN模型,并根据需求对源码进行修改和优化。同时,通过源码分析,我们也可以学习到一些深度学习模型设计和实现的技巧,对后续的模型研究和应用有所帮助。

cgan代码实例tensorflow

### 回答1: CGAN,全称为Conditional Generative Adversarial Networks,是一种在生成对抗网络(GAN)的基础上进行优化的算法,它可以根据传入的条件信息来生成特定类型的数据。在这个算法中,生成器和判别器都会接收一个额外的条件输入参数。 TensorFlow是一个广泛使用的深度学习框架,它提供了各种各样的函数和类来简化CGAN模型的实现过程。以下是一个使用TensorFlow实现CGAN的代码示例: ``` import tensorflow as tf import numpy as np # 定义生成器和判别器的输入形状 noise_dim = 100 label_dim = 10 # 定义生成器的函数 def make_generator_model(): model = tf.keras.Sequential() model.add(tf.keras.layers.Dense(256, input_dim=noise_dim + label_dim, activation='relu')) model.add(tf.keras.layers.BatchNormalization()) model.add(tf.keras.layers.Dense(512, activation='relu')) model.add(tf.keras.layers.BatchNormalization()) model.add(tf.keras.layers.Dense(28 * 28 * 1, activation='sigmoid')) model.add(tf.keras.layers.Reshape((28, 28, 1))) return model # 定义判别器的函数 def make_discriminator_model(): model = tf.keras.Sequential() model.add(tf.keras.layers.Flatten(input_shape=(28, 28, 1))) model.add(tf.keras.layers.Dense(512, activation='relu')) model.add(tf.keras.layers.Dense(256, activation='relu')) model.add(tf.keras.layers.Dense(1, activation='sigmoid')) return model # 定义损失函数 cross_entropy = tf.keras.losses.BinaryCrossentropy(from_logits=True) def discriminator_loss(real_output, fake_output): real_loss = cross_entropy(tf.ones_like(real_output), real_output) fake_loss = cross_entropy(tf.zeros_like(fake_output), fake_output) total_loss = real_loss + fake_loss return total_loss def generator_loss(fake_output): return cross_entropy(tf.ones_like(fake_output), fake_output) # 定义优化器 generator_optimizer = tf.keras.optimizers.Adam(1e-4) discriminator_optimizer = tf.keras.optimizers.Adam(1e-4) # 定义训练过程 @tf.function def train_step(images, labels): noise = tf.random.normal([batch_size, noise_dim]) with tf.GradientTape() as gen_tape, tf.GradientTape() as disc_tape: fake_labels = tf.random.uniform([batch_size, 1], maxval=label_dim, dtype=tf.int32) fake_labels = tf.one_hot(tf.reshape(fake_labels, [-1]), label_dim) generated_images = generator(tf.concat([noise, fake_labels], axis=1), training=True) real_output = discriminator(tf.concat([images, labels], axis=1), training=True) fake_output = discriminator(tf.concat([generated_images, fake_labels], axis=1), training=True) gen_loss = generator_loss(fake_output) disc_loss = discriminator_loss(real_output, fake_output) gradients_of_generator = gen_tape.gradient(gen_loss, generator.trainable_variables) gradients_of_discriminator = disc_tape.gradient(disc_loss, discriminator.trainable_variables) generator_optimizer.apply_gradients(zip(gradients_of_generator, generator.trainable_variables)) discriminator_optimizer.apply_gradients(zip(gradients_of_discriminator, discriminator.trainable_variables)) # 进行训练 EPOCHS = 100 batch_size = 128 generator = make_generator_model() discriminator = make_discriminator_model() for epoch in range(EPOCHS): for i in range(train_images.shape[0]//batch_size): images = train_images[i*batch_size:(i+1)*batch_size] labels = train_labels[i*batch_size:(i+1)*batch_size] train_step(images, labels) # 生成一些带有特定标签的图像 noise = tf.random.normal([10, noise_dim]) cond_labels = np.eye(label_dim)[np.arange(10)] generated_images = generator(tf.concat([noise, cond_labels], axis=1), training=False) ``` 上面的代码中,我们定义了生成器和判别器的模型结构和优化器。在训练过程中,我们使用TensorFlow的`GradientTape`记录损失函数的梯度,并根据反向传播算法来更新模型的参数,最终得到一个可以生成特定标签图像的CGAN模型。 ### 回答2: CGAN是一种生成对抗网络,可以用来生成符合特定条件(如标签)的图像。 Tensorflow作为一款流行的神经网络框架,可以实现CGAN网络。本文将介绍如何使用tensorflow实现CGAN的简单示例代码。 首先,我们需要准备数据集和标签。这里我们以MNIST手写数字数据集为例,选择其中的数字4和9作为我们的标签。我们使用tensorflow内置的MNIST数据集,然后创建两个新的数据集,一个只包含数字4的图片,另一个只包含数字9的图片。 接下来,我们需要编写CGAN网络的模型。我们假设生成器和判别器都是以卷积神经网络作为基础。 生成器是一个卷积神经网络,输入为一个噪声向量和标签,输出为一个28x28的图像。为了获得更好的效果,我们采用了ResNet的结构。 判别器是另一个卷积神经网络,输入为一个28x28的图像和标签,输出为一个二元值,表示输入是否是真实的图像。同时,我们也采用了ResNet的结构来提高判别器的性能。 我们将生成器和判别器组合起来,并使用交叉熵损失函数来优化网络的性能。 最后,我们需要编写训练代码,对生成器和判别器进行训练。我们使用Adam优化器,对损失函数进行优化,并将生成的图像保存在本地文件夹中。 在运行训练代码之后,我们可以得到生成器生成的样本图像,观察生成的图像是否符合我们的标签条件,以此来评估CGAN网络的性能。 以上就是使用tensorflow实现CGAN网络的简单示例代码,该代码可以用于生成符合特定条件的图像。当然,如果要应用到更复杂的数据集和场景中,需要对代码进行相应的修改和优化。 ### 回答3: CGAN是一种深度学习模型,它能够生成新的图像数据,同时还能对生成图像的样式进行控制。在TensorFlow中实现CGAN的代码实例如下: 首先,需要加载一些必要的库,如numpy,matplotlib和tensorflow: import numpy as np import matplotlib.pyplot as plt import tensorflow as tf 接着,定义生成器和判别器网络。生成器网络将输入的随机向量转化成一张图像,而判别器网络则将输入的图像打上真或假的标签: def generator_model(): model = tf.keras.Sequential() model.add(tf.keras.layers.Dense(7*7*256, input_shape=(100,))) model.add(tf.keras.layers.Reshape((7, 7, 256))) model.add(tf.keras.layers.BatchNormalization()) model.add(tf.keras.layers.Conv2DTranspose(128, (5, 5), strides=(1, 1), padding='same')) model.add(tf.keras.layers.BatchNormalization()) model.add(tf.keras.layers.LeakyReLU()) model.add(tf.keras.layers.Conv2DTranspose(64, (5, 5), strides=(2, 2), padding='same')) model.add(tf.keras.layers.BatchNormalization()) model.add(tf.keras.layers.LeakyReLU()) model.add(tf.keras.layers.Conv2DTranspose(1, (5, 5), strides=(2, 2), padding='same', activation='tanh')) return model def discriminator_model(): model = tf.keras.Sequential() model.add(tf.keras.layers.Conv2D(64, (5, 5), strides=(2, 2), padding='same', input_shape=[28, 28, 1])) model.add(tf.keras.layers.LeakyReLU()) model.add(tf.keras.layers.Dropout(0.3)) model.add(tf.keras.layers.Conv2D(128, (5, 5), strides=(2, 2), padding='same')) model.add(tf.keras.layers.LeakyReLU()) model.add(tf.keras.layers.Dropout(0.3)) model.add(tf.keras.layers.Flatten()) model.add(tf.keras.layers.Dense(1)) return model 接下来,我们定义CGAN的训练过程。由于本次训练中将会用到真实图像和生成图像,因此需要定义d_loss和g_loss,使之能够同时对真实图像和生成的图像进行优化: @tf.function def train_step(images, labels): noise = tf.random.normal([BATCH_SIZE, LATENT_DIM]) with tf.GradientTape() as gen_tape, tf.GradientTape() as disc_tape: generated_images = generator([noise, labels], training=True) real_output = discriminator([images, labels], training=True) fake_output = discriminator([generated_images, labels], training=True) gen_loss = generator_loss(fake_output) disc_loss = discriminator_loss(real_output, fake_output) gradients_of_generator = gen_tape.gradient(gen_loss, generator.trainable_variables) gradients_of_discriminator = disc_tape.gradient(disc_loss, discriminator.trainable_variables) generator_optimizer.apply_gradients(zip(gradients_of_generator, generator.trainable_variables)) discriminator_optimizer.apply_gradients(zip(gradients_of_discriminator, discriminator.trainable_variables)) 在定义好train_step之后,我们可以通过循环来进行训练。在每个epoch结束后,我们会将生成器生成的示例图像和损失输出到终端: def train(dataset, epochs): for epoch in range(epochs): for image_batch, label_batch in dataset: train_step(image_batch, label_batch) display.clear_output(wait=True) generate_and_save_images(generator, epoch + 1, test_labels) print ('Time for epoch {} is {} sec'.format(epoch + 1, time.time()-start)) display.clear_output(wait=True) generate_and_save_images(generator, epochs, test_labels) train(train_dataset, EPOCHS) 最后是完整的训练代码:
阅读全文

相关推荐

最新推荐

recommend-type

图像去雾基于基于Matlab界面的(多方法对比,PSNR,信息熵,GUI界面).rar

MATLAB设计
recommend-type

c语言打字母游戏源码.zip

c语言打字母游戏源码
recommend-type

易语言例程:用易核心支持库打造功能丰富的IE浏览框

资源摘要信息:"易语言-易核心支持库实现功能完善的IE浏览框" 易语言是一种简单易学的编程语言,主要面向中文用户。它提供了大量的库和组件,使得开发者能够快速开发各种应用程序。在易语言中,通过调用易核心支持库,可以实现功能完善的IE浏览框。IE浏览框,顾名思义,就是能够在一个应用程序窗口内嵌入一个Internet Explorer浏览器控件,从而实现网页浏览的功能。 易核心支持库是易语言中的一个重要组件,它提供了对IE浏览器核心的调用接口,使得开发者能够在易语言环境下使用IE浏览器的功能。通过这种方式,开发者可以创建一个具有完整功能的IE浏览器实例,它不仅能够显示网页,还能够支持各种浏览器操作,如前进、后退、刷新、停止等,并且还能够响应各种事件,如页面加载完成、链接点击等。 在易语言中实现IE浏览框,通常需要以下几个步骤: 1. 引入易核心支持库:首先需要在易语言的开发环境中引入易核心支持库,这样才能在程序中使用库提供的功能。 2. 创建浏览器控件:使用易核心支持库提供的API,创建一个浏览器控件实例。在这个过程中,可以设置控件的初始大小、位置等属性。 3. 加载网页:将浏览器控件与一个网页地址关联起来,即可在控件中加载显示网页内容。 4. 控制浏览器行为:通过易核心支持库提供的接口,可以控制浏览器的行为,如前进、后退、刷新页面等。同时,也可以响应浏览器事件,实现自定义的交互逻辑。 5. 调试和优化:在开发完成后,需要对IE浏览框进行调试,确保其在不同的操作和网页内容下均能够正常工作。对于性能和兼容性的问题需要进行相应的优化处理。 易语言的易核心支持库使得在易语言环境下实现IE浏览框变得非常方便,它极大地降低了开发难度,并且提高了开发效率。由于易语言的易用性,即使是初学者也能够在短时间内学会如何创建和操作IE浏览框,实现网页浏览的功能。 需要注意的是,由于IE浏览器已经逐渐被微软边缘浏览器(Microsoft Edge)所替代,使用IE核心的技术未来可能面临兼容性和安全性的挑战。因此,在实际开发中,开发者应考虑到这一点,并根据需求选择合适的浏览器控件实现技术。 此外,易语言虽然简化了编程过程,但其在功能上可能不如主流的编程语言(如C++, Java等)强大,且社区和技术支持相比其他语言可能较为有限,这些都是在选择易语言作为开发工具时需要考虑的因素。 文件名列表中的“IE类”可能是指包含实现IE浏览框功能的类库或者示例代码。在易语言中,类库是一组封装好的代码模块,其中包含了各种功能的实现。通过在易语言项目中引用这些类库,开发者可以简化开发过程,快速实现特定功能。而示例代码则为开发者提供了具体的实现参考,帮助理解和学习如何使用易核心支持库来创建IE浏览框。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

STM32F407ZG引脚功能深度剖析:掌握引脚分布与配置的秘密(全面解读)

![STM32F407ZG引脚功能深度剖析:掌握引脚分布与配置的秘密(全面解读)](https://tapit.vn/wp-content/uploads/2019/01/cubemx-peripheral-1024x545.png) # 摘要 本文全面介绍了STM32F407ZG微控制器的引脚特性、功能、配置和应用。首先概述了该芯片的引脚布局,然后详细探讨了标准外设、高级控制以及特殊功能引脚的不同配置和使用方法。在此基础上,文章深入分析了引脚模式配置、高级配置技巧,并提供了实际应用案例,如LED控制和串口通信。在设计方面,阐述了引脚布局策略、多层板设计及高密度引脚应用的解决方案。最后,介绍
recommend-type

给出文档中问题的答案代码

您提到的是需要编写MATLAB代码来实现文档中的实验任务。以下是根据文档内容编写的MATLAB代码示例: ```matlab % 上机2 实验代码 % 读取输入图像 inputImage = imread('your_face_image.jpg'); % 替换为您的图像文件路径 if size(inputImage, 1) < 1024 || size(inputImage, 2) < 1024 error('图像尺寸必须大于1024x1024'); end % 将彩色图像转换为灰度图像 grayImage = rgb2gray(inputImage); % 调整图像大小为5
recommend-type

Docker构建与运行Next.js应用的指南

资源摘要信息:"rivoltafilippo-next-main" 在探讨“rivoltafilippo-next-main”这一资源时,首先要从标题“rivoltafilippo-next”入手。这个标题可能是某一项目、代码库或应用的命名,结合描述中提到的Docker构建和运行命令,我们可以推断这是一个基于Docker的Node.js应用,特别是使用了Next.js框架的项目。Next.js是一个流行的React框架,用于服务器端渲染和静态网站生成。 描述部分提供了构建和运行基于Docker的Next.js应用的具体命令: 1. `docker build`命令用于创建一个新的Docker镜像。在构建镜像的过程中,开发者可以定义Dockerfile文件,该文件是一个文本文件,包含了创建Docker镜像所需的指令集。通过使用`-t`参数,用户可以为生成的镜像指定一个标签,这里的标签是`my-next-js-app`,意味着构建的镜像将被标记为`my-next-js-app`,方便后续的识别和引用。 2. `docker run`命令则用于运行一个Docker容器,即基于镜像启动一个实例。在这个命令中,`-p 3000:3000`参数指示Docker将容器内的3000端口映射到宿主机的3000端口,这样做通常是为了让宿主机能够访问容器内运行的应用。`my-next-js-app`是容器运行时使用的镜像名称,这个名称应该与构建时指定的标签一致。 最后,我们注意到资源包含了“TypeScript”这一标签,这表明项目可能使用了TypeScript语言。TypeScript是JavaScript的一个超集,它添加了静态类型定义的特性,能够帮助开发者更容易地维护和扩展代码,尤其是在大型项目中。 结合资源名称“rivoltafilippo-next-main”,我们可以推测这是项目的主目录或主仓库。通常情况下,开发者会将项目的源代码、配置文件、构建脚本等放在一个主要的目录中,这个目录通常命名为“main”或“src”等,以便于管理和维护。 综上所述,我们可以总结出以下几个重要的知识点: - Docker容器和镜像的概念以及它们之间的关系:Docker镜像是静态的只读模板,而Docker容器是从镜像实例化的动态运行环境。 - `docker build`命令的使用方法和作用:这个命令用于创建新的Docker镜像,通常需要一个Dockerfile来指定构建的指令和环境。 - `docker run`命令的使用方法和作用:该命令用于根据镜像启动一个或多个容器实例,并可指定端口映射等运行参数。 - Next.js框架的特点:Next.js是一个支持服务器端渲染和静态网站生成的React框架,适合构建现代的Web应用。 - TypeScript的作用和优势:TypeScript是JavaScript的一个超集,它提供了静态类型检查等特性,有助于提高代码质量和可维护性。 - 项目资源命名习惯:通常项目会有一个主目录,用来存放项目的源代码和核心配置文件,以便于项目的版本控制和团队协作。 以上内容基于给定的信息进行了深入的分析,为理解该项目的构建、运行方式以及技术栈提供了基础。在实际开发中,开发者应当参考更详细的文档和指南,以更高效地管理和部署基于Docker和TypeScript的Next.js项目。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【热传递模型的终极指南】:掌握分类、仿真设计、优化与故障诊断的18大秘诀

![热传递模型](https://study.com/cimages/videopreview/radiation-heat-transfer-the-stefan-boltzmann-law_135679.png) # 摘要 热传递模型在工程和物理学中占有重要地位,对于提高热交换效率和散热设计至关重要。本文系统性地介绍了热传递模型的基础知识、分类以及在实际中的应用案例。文章详细阐述了导热、对流换热以及辐射传热的基本原理,并对不同类型的热传递模型进行了分类,包括稳态与非稳态模型、一维到三维模型和线性与非线性模型。通过仿真设计章节,文章展示了如何选择合适的仿真软件、构建几何模型、设置材料属性和
recommend-type

python经典题型和解题代码

Python的经典题型通常涵盖了基础语法、数据结构、算法、函数式编程、文件操作、异常处理以及网络爬虫等内容。以下是一些常见的题目及其简单示例: 1. **基础题**: - 示例:打印九九乘法表 ```python for i in range(1, 10): print(f"{i} * {i} = {i*i}") ``` 2. **数据结构**: - 示例:实现队列(使用列表) ```python class Queue: def __init__(self):