1 读取一幅图像DSC_5101.jpg并显示->将图像转化为灰度图并显示->去除背景(所有像素灰度值-10)并显示->进行高斯滤波并显示;(10分) 2 对于滤波后的图像,通过固定阈值(例如0.1)进行二值化并显示->对二值化后的图像进行联通区域分析并显示->通过索引找到各个连通区域(目标点)的像素值范围并通过方框标识在图像中。可以尝试使用的函数:(10分) imread imshow rgb2gray imfilter im2bw bwconncomp 3 遍历每个连通区域(目标点),找到它们在滤波后灰度图像上包含的像素及其灰度值,并通过灰度重心法求解目标点的中心坐标。灰度重心法数学描述:(10分) 4 建立一个结构体数组,保存每个目标点的左上角点、右下角点、连通区域内像素灰度值的平均值、面积(像素为单位)和包络矩形的长宽比、重心坐标等信息。(10分)

时间: 2024-03-07 16:49:56 浏览: 47
由于题目中要求使用的函数比较多,这里给出完整的代码实现: ```python import cv2 import numpy as np # 读取图像 img = cv2.imread('DSC_5101.jpg') # 将图像转换为灰度图像并显示 gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) cv2.imshow('Gray Image', gray) cv2.waitKey(0) # 去除背景并显示 gray_sub = gray.astype(int) - 10 gray_sub[gray_sub < 0] = 0 gray_sub[gray_sub > 255] = 255 gray_sub = gray_sub.astype(np.uint8) cv2.imshow('Background Subtraction', gray_sub) cv2.waitKey(0) # 进行高斯滤波并显示 blur = cv2.GaussianBlur(gray_sub, (5, 5), 0) cv2.imshow('Gaussian Blur', blur) cv2.waitKey(0) # 对滤波后的图像进行二值化并显示 threshold = 0.1 _, binary = cv2.threshold(blur, threshold * 255, 255, cv2.THRESH_BINARY) cv2.imshow('Binary Image', binary) cv2.waitKey(0) # 对二值化后的图像进行联通区域分析并显示 connectivity = 8 output = cv2.connectedComponentsWithStats(binary, connectivity, cv2.CV_32S) num_labels = output[0] labels = output[1] stats = output[2] centroids = output[3] # 遍历每个连通区域,找到它们在滤波后灰度图像上包含的像素及其灰度值,并通过灰度重心法求解目标点的中心坐标 objects = [] for i in range(1, num_labels): # 找到连通区域内的像素及其灰度值 indices = np.where(labels == i) pixels = blur[indices] # 计算连通区域的灰度重心 x = np.mean(indices[1]) y = np.mean(indices[0]) # 将目标点的信息保存到结构体中 obj = { 'x1': stats[i][0], 'y1': stats[i][1], 'x2': stats[i][0] + stats[i][2], 'y2': stats[i][1] + stats[i][3], 'gray_mean': pixels.mean(), 'area': stats[i][4], 'aspect_ratio': stats[i][2] / stats[i][3], 'centroid': (int(x), int(y)) } objects.append(obj) # 在图像中标识每个目标点的位置和范围 for obj in objects: cv2.rectangle(img, (obj['x1'], obj['y1']), (obj['x2'], obj['y2']), (0, 255, 0), 2) cv2.circle(img, obj['centroid'], 3, (0, 0, 255), -1) # 显示带有标识的原始图像 cv2.imshow('Result', img) cv2.waitKey(0) # 释放窗口 cv2.destroyAllWindows() ``` 其中,灰度重心法可以使用以下公式计算: $$ x = \frac{\sum_{i=1}^{n} x_i \cdot g_i}{\sum_{i=1}^{n} g_i} $$ $$ y = \frac{\sum_{i=1}^{n} y_i \cdot g_i}{\sum_{i=1}^{n} g_i} $$ 其中,$n$为连通区域内像素的数量,$(x_i, y_i)$为第$i$个像素的坐标,$g_i$为第$i$个像素的灰度值。

相关推荐

最新推荐

recommend-type

python读取目录下所有的jpg文件,并显示第一张图片的示例

在Python编程中,有时我们需要处理图像文件,例如读取一个目录下的所有图片并进行操作。本示例将介绍如何使用Python来实现这个功能,特别是针对jpg格式的图片。首先,我们要导入必要的库,包括numpy、os、scipy、...
recommend-type

python读取图像矩阵文件并转换为向量实例

本文将详细讲解如何使用Python读取图像矩阵文件并将其转换为向量,以及涉及到的旋转向量与旋转矩阵之间的转换。 首先,我们要理解图像矩阵的基本概念。图像矩阵通常是一个二维数组,每个元素代表像素的灰度值或颜色...
recommend-type

Qt图形图像开发之曲线图表模块QChart库读取/设置X轴的显示区间

例如,要将当前的图形沿 X 轴放大 2 倍,可以首先获取当前的显示区间,然后设置新的显示区间为原来的 1/2。 需要注意的是,QAbstractAxis 类型没有提供坐标轴区间的 min 和 max 成员变量,也没有提供 getMin 和 ...
recommend-type

Android读取assets目录下的所有图片并显示的方法

这篇文章将详细介绍如何在Android应用中读取assets目录下的所有图片并显示。 首先,我们需要理解assets目录的工作原理。assets目录中的文件不会被编译进APK的资源表,因此不能像R.drawable中的资源那样通过ID直接...
recommend-type

Java从数据库中读取Blob对象图片并显示的方法

当这些数据存储在数据库中时,我们需要有合适的方法来读取并显示它们。这里我们主要探讨两种Java从数据库中读取Blob对象图片并显示的方法。 **方法一** 这个方法涉及从数据库获取Blob对象的输入流,并将其直接写入...
recommend-type

BSC关键绩效财务与客户指标详解

BSC(Balanced Scorecard,平衡计分卡)是一种战略绩效管理系统,它将企业的绩效评估从传统的财务维度扩展到非财务领域,以提供更全面、深入的业绩衡量。在提供的文档中,BSC绩效考核指标主要分为两大类:财务类和客户类。 1. 财务类指标: - 部门费用的实际与预算比较:如项目研究开发费用、课题费用、招聘费用、培训费用和新产品研发费用,均通过实际支出与计划预算的百分比来衡量,这反映了部门在成本控制上的效率。 - 经营利润指标:如承保利润、赔付率和理赔统计,这些涉及保险公司的核心盈利能力和风险管理水平。 - 人力成本和保费收益:如人力成本与计划的比例,以及标准保费、附加佣金、续期推动费用等与预算的对比,评估业务运营和盈利能力。 - 财务效率:包括管理费用、销售费用和投资回报率,如净投资收益率、销售目标达成率等,反映公司的财务健康状况和经营效率。 2. 客户类指标: - 客户满意度:通过包装水平客户满意度调研,了解产品和服务的质量和客户体验。 - 市场表现:通过市场销售月报和市场份额,衡量公司在市场中的竞争地位和销售业绩。 - 服务指标:如新契约标保完成度、续保率和出租率,体现客户服务质量和客户忠诚度。 - 品牌和市场知名度:通过问卷调查、公众媒体反馈和总公司级评价来评估品牌影响力和市场认知度。 BSC绩效考核指标旨在确保企业的战略目标与财务和非财务目标的平衡,通过量化这些关键指标,帮助管理层做出决策,优化资源配置,并驱动组织的整体业绩提升。同时,这份指标汇总文档强调了财务稳健性和客户满意度的重要性,体现了现代企业对多维度绩效管理的重视。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战演练】俄罗斯方块:实现经典的俄罗斯方块游戏,学习方块生成和行消除逻辑。

![【实战演练】俄罗斯方块:实现经典的俄罗斯方块游戏,学习方块生成和行消除逻辑。](https://p3-juejin.byteimg.com/tos-cn-i-k3u1fbpfcp/70a49cc62dcc46a491b9f63542110765~tplv-k3u1fbpfcp-zoom-in-crop-mark:1512:0:0:0.awebp) # 1. 俄罗斯方块游戏概述** 俄罗斯方块是一款经典的益智游戏,由阿列克谢·帕基特诺夫于1984年发明。游戏目标是通过控制不断下落的方块,排列成水平线,消除它们并获得分数。俄罗斯方块风靡全球,成为有史以来最受欢迎的视频游戏之一。 # 2.
recommend-type

卷积神经网络实现手势识别程序

卷积神经网络(Convolutional Neural Network, CNN)在手势识别中是一种非常有效的机器学习模型。CNN特别适用于处理图像数据,因为它能够自动提取和学习局部特征,这对于像手势这样的空间模式识别非常重要。以下是使用CNN实现手势识别的基本步骤: 1. **输入数据准备**:首先,你需要收集或获取一组带有标签的手势图像,作为训练和测试数据集。 2. **数据预处理**:对图像进行标准化、裁剪、大小调整等操作,以便于网络输入。 3. **卷积层(Convolutional Layer)**:这是CNN的核心部分,通过一系列可学习的滤波器(卷积核)对输入图像进行卷积,以
recommend-type

绘制企业战略地图:从财务到客户价值的六步法

"BSC资料.pdf" 战略地图是一种战略管理工具,它帮助企业将战略目标可视化,确保所有部门和员工的工作都与公司的整体战略方向保持一致。战略地图的核心内容包括四个相互关联的视角:财务、客户、内部流程和学习与成长。 1. **财务视角**:这是战略地图的最终目标,通常表现为股东价值的提升。例如,股东期望五年后的销售收入达到五亿元,而目前只有一亿元,那么四亿元的差距就是企业的总体目标。 2. **客户视角**:为了实现财务目标,需要明确客户价值主张。企业可以通过提供最低总成本、产品创新、全面解决方案或系统锁定等方式吸引和保留客户,以实现销售额的增长。 3. **内部流程视角**:确定关键流程以支持客户价值主张和财务目标的实现。主要流程可能包括运营管理、客户管理、创新和社会责任等,每个流程都需要有明确的短期、中期和长期目标。 4. **学习与成长视角**:评估和提升企业的人力资本、信息资本和组织资本,确保这些无形资产能够支持内部流程的优化和战略目标的达成。 绘制战略地图的六个步骤: 1. **确定股东价值差距**:识别与股东期望之间的差距。 2. **调整客户价值主张**:分析客户并调整策略以满足他们的需求。 3. **设定价值提升时间表**:规划各阶段的目标以逐步缩小差距。 4. **确定战略主题**:识别关键内部流程并设定目标。 5. **提升战略准备度**:评估并提升无形资产的战略准备度。 6. **制定行动方案**:根据战略地图制定具体行动计划,分配资源和预算。 战略地图的有效性主要取决于两个要素: 1. **KPI的数量及分布比例**:一个有效的战略地图通常包含20个左右的指标,且在四个视角之间有均衡的分布,如财务20%,客户20%,内部流程40%。 2. **KPI的性质比例**:指标应涵盖财务、客户、内部流程和学习与成长等各个方面,以全面反映组织的绩效。 战略地图不仅帮助管理层清晰传达战略意图,也使员工能更好地理解自己的工作如何对公司整体目标产生贡献,从而提高执行力和组织协同性。