yolov7怎么改成视频输入
时间: 2023-07-14 20:14:07 浏览: 122
将YOLOv7应用于视频输入需要进行以下更改:
1. 更改输入源:使用OpenCV或类似库读取视频文件或从摄像头获取帧。
2. 将每个帧作为输入传递给YOLOv7模型,而不是单个图像。
3. 在每个帧上运行YOLOv7模型,以检测视频中的对象。
4. 将检测到的对象绘制到帧上,并将帧传递给输出流或保存到文件中。
以下是Python代码示例,展示如何将YOLOv7应用于视频输入:
```python
import cv2
import torch
from yolov7.models.experimental import attempt_load
from yolov7.utils.general import non_max_suppression, scale_coords, plot_one_box
from yolov7.utils.torch_utils import select_device
# Load YOLOv7 model
weights = 'yolov7.pt'
device = select_device('')
model = attempt_load(weights, map_location=device).autoshape()
# Open video file or start camera stream
cap = cv2.VideoCapture('video.mp4')
# cap = cv2.VideoCapture(0)
# Define output video codec, frame rate, and resolution
codec = cv2.VideoWriter_fourcc(*'mp4v')
fps = cap.get(cv2.CAP_PROP_FPS)
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
out = cv2.VideoWriter('output.mp4', codec, fps, (width, height))
while cap.isOpened():
# Read a frame from the video
ret, frame = cap.read()
if not ret:
break
# Convert the frame to a tensor
img = torch.from_numpy(frame).to(device)
img = img.float() / 255.0
if img.ndimension() == 3:
img = img.unsqueeze(0)
# Run YOLOv7 model on the frame
pred = model(img)[0]
pred = non_max_suppression(pred, conf_thres=0.5, iou_thres=0.5)
for det in pred:
if len(det):
det[:, :4] = scale_coords(img.shape[2:], det[:, :4], frame.shape).round()
for *xyxy, conf, cls in reversed(det):
label = f'{model.names[int(cls)]} {conf:.2f}'
plot_one_box(xyxy, frame, label=label, color=(0, 255, 0))
# Write the frame to the output video
out.write(frame)
# Display the output frame
cv2.imshow('frame', frame)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
# Release resources
cap.release()
out.release()
cv2.destroyAllWindows()
```
在上面的示例中,我们使用OpenCV库从视频文件中读取帧,然后将每个帧转换为PyTorch张量,并在其中运行YOLOv7模型。然后,我们使用`non_max_suppression`函数过滤掉重叠的边界框,并使用`plot_one_box`函数将检测到的对象绘制到每个帧上。最后,我们将帧写入输出视频文件,并在窗口中显示输出帧。
阅读全文