std::ref 的用法
时间: 2023-10-17 20:05:41 浏览: 65
std::ref 是一个模板函数,用于引用传递一个对象而不是拷贝。通常,当我们想要将一个对象传递给一个函数并且可能会修改这个对象时,我们会使用引用传递来避免拷贝。然而,在某些情况下,我们希望将对象作为参数传递给一个函数,但是这个函数需要一个复制对象,我们不能直接传递引用。这就是 std::ref 函数的作用,它可以创建一个可以被复制的对象,但是这个对象可以被引用来修改原始对象。例如:
```
#include <iostream>
#include <functional>
void increment(int& n) {
++n;
}
int main() {
int n = 0;
std::function<void()> f = std::bind(increment, std::ref(n));
f();
std::cout << n << std::endl;
return 0;
}
```
这个例子通过 std::function 和 std::bind 使用了 std::ref 函数来创建了一个可复制的引用对象。当调用 f() 时,它将调用 increment 函数来递增原始对象 n 的值。
相关问题
std::thread th(method,std::ref("/dev/ttyUSB0"),460800,std::ref(handler),time);报error: static assertion failed
这个错误通常是由于method的参数类型与"/dev/ttyUSB0"和handler不匹配引起的。请确保method的参数类型与"/dev/ttyUSB0"和handler的类型匹配。如果参数类型不匹配,可以使用std::bind将参数绑定到方法中,例如:
```
std::thread th(std::bind(method, "/dev/ttyUSB0", 460800, handler, time));
```
请注意,当使用std::bind时,方法的第一个参数会自动成为绑定的参数,因此不需要使用std::ref。
加速这一段代码#include <thread> #include <mutex> // 用于保护m_vpdEdgePoints和m_vdEdgeGradient的锁 std::mutex g_mutex; void process_edges(const cv::Mat& RoiMat, const std::vectorcv::Point2d& m_vpdEquinoxPoints, const double m_dMeasureLength, const double m_dMeasureHeight, const double m_dSigma, const int m_nThresholdCircle, const int m_nTranslationCircle, const std::vector<double>& m_vdMeasureAngle, std::vectorcv::Point2d& m_vpdEdgePoints, std::vector<double>& m_vdEdgeGradient, int start_idx, int end_idx, Extract1DEdgeCircle Extract1DEdgeCircle) { std::vector<Edge1D_Result> edges; for (int i = start_idx; i < end_idx; i++) { edges = Extract1DEdgeCircle.Get1DEdge(RoiMat, m_vpdEquinoxPoints[i], m_dMeasureLength, m_dMeasureHeight,m_vdMeasureAngle[i], m_dSigma, m_nThresholdCircle, m_nTranslationCircle == 1 ? Translation::Poisitive : Translation::Negative, Selection::Strongest); // 使用锁保护m_vpdEdgePoints和m_vdEdgeGradient //std::lock_guardstd::mutex lock(g_mutex); for (int j = 0; j < edges.size(); j++) { m_vpdEdgePoints.push_back(edges[j].m_pdEdgePoint); m_vdEdgeGradient.push_back(edges[j].m_dGradient); } } } const int num_threads = 10; std::vectorstd::thread threads(num_threads); std::vector<std::vectorcv::Point2d> edge_points(num_threads); std::vector<std::vector<double>> edge_gradients(num_threads); for (int i = 0; i < num_threads; i++) { int start_idx = i * m / num_threads; int end_idx = (i + 1) * m / num_threads; threads[i] = std::thread(process_edges, std::ref(RoiMat), std::ref(m_vpdEquinoxPoints), m_dMeasureLength, m_dMeasureHeight, m_dSigma, m_nThresholdCircle, m_nTranslationCircle, std::ref(m_vdMeasureAngle), std::ref(edge_points[i]), std::ref(edge_gradients[i]), start_idx, end_idx, Extract1DEdgeCircle); } for (int i = 0; i < num_threads; i++) { threads[i].join(); // 合并结果 m_vpdEdgePoints.insert(m_vpdEdgePoints.end(), edge_points[i].begin(), edge_points[i].end()); m_vdEdgeGradient.insert(m_vdEdgeGradient.end(), edge_gradients[i].begin(), edge_gradients[i].end()); }
可以使用并行化技术来加速这段代码。具体来说,可以使用std::thread和std::mutex来创建多个线程处理不同部分的数据,并通过锁来保护共享数据的访问。下面是一个可能的实现:
```c++
#include <thread>
#include <mutex>
// 用于保护m_vpdEdgePoints和m_vdEdgeGradient的锁
std::mutex g_mutex;
void process_edges(const cv::Mat& RoiMat,
const std::vector<cv::Point2d>& m_vpdEquinoxPoints,
const double m_dMeasureLength,
const double m_dMeasureHeight,
const double m_dSigma,
const int m_nThresholdCircle,
const int m_nTranslationCircle,
const std::vector<double>& m_vdMeasureAngle,
std::vector<cv::Point2d>& m_vpdEdgePoints,
std::vector<double>& m_vdEdgeGradient,
int start_idx,
int end_idx,
Extract1DEdgeCircle Extract1DEdgeCircle) {
std::vector<Edge1D_Result> edges;
for (int i = start_idx; i < end_idx; i++) {
edges = Extract1DEdgeCircle.Get1DEdge(RoiMat,
m_vpdEquinoxPoints[i],
m_dMeasureLength,
m_dMeasureHeight,
m_vdMeasureAngle[i],
m_dSigma,
m_nThresholdCircle,
m_nTranslationCircle == 1 ? Translation::Poisitive : Translation::Negative,
Selection::Strongest);
// 使用锁保护m_vpdEdgePoints和m_vdEdgeGradient
std::lock_guard<std::mutex> lock(g_mutex);
for (int j = 0; j < edges.size(); j++) {
m_vpdEdgePoints.push_back(edges[j].m_pdEdgePoint);
m_vdEdgeGradient.push_back(edges[j].m_dGradient);
}
}
}
void parallel_process_edges(const cv::Mat& RoiMat,
const std::vector<cv::Point2d>& m_vpdEquinoxPoints,
const double m_dMeasureLength,
const double m_dMeasureHeight,
const double m_dSigma,
const int m_nThresholdCircle,
const int m_nTranslationCircle,
const std::vector<double>& m_vdMeasureAngle,
std::vector<cv::Point2d>& m_vpdEdgePoints,
std::vector<double>& m_vdEdgeGradient,
int num_threads,
Extract1DEdgeCircle Extract1DEdgeCircle) {
std::vector<std::thread> threads(num_threads);
std::vector<std::vector<cv::Point2d>> edge_points(num_threads);
std::vector<std::vector<double>> edge_gradients(num_threads);
for (int i = 0; i < num_threads; i++) {
int start_idx = i * m_vpdEquinoxPoints.size() / num_threads;
int end_idx = (i + 1) * m_vpdEquinoxPoints.size() / num_threads;
threads[i] = std::thread(process_edges,
std::ref(RoiMat),
std::ref(m_vpdEquinoxPoints),
m_dMeasureLength,
m_dMeasureHeight,
m_dSigma,
m_nThresholdCircle,
m_nTranslationCircle,
std::ref(m_vdMeasureAngle),
std::ref(edge_points[i]),
std::ref(edge_gradients[i]),
start_idx,
end_idx,
Extract1DEdgeCircle);
}
for (int i = 0; i < num_threads; i++) {
threads[i].join();
// 合并结果
m_vpdEdgePoints.insert(m_vpdEdgePoints.end(), edge_points[i].begin(), edge_points[i].end());
m_vdEdgeGradient.insert(m_vdEdgeGradient.end(), edge_gradients[i].begin(), edge_gradients[i].end());
}
}
```
在这个实现中,我们定义了一个新的函数parallel_process_edges来处理并行化。它接受与原始函数相同的参数,并使用std::thread和std::mutex来创建多个线程执行process_edges函数。每个线程处理输入点集的一个子集,并将结果存储在本地向量中。最后,我们将所有线程的结果合并到主向量中。
请注意,我们使用了一个简单的均匀分割策略来将输入点集划分为不同的子集,但这可能会导致不平衡的工作负载。更好的方法是使用动态划分策略,即根据实际工作负载将任务动态地分配给可用的线程。不过,这需要更复杂的实现。
阅读全文