c语言哈夫曼编码译码

时间: 2024-05-06 14:14:30 浏览: 11
哈夫曼编码是一种用于压缩数据的技术,它的基本思想是根据数据出现的频率构建一棵二叉树,并将出现频率较高的字符编码为较短的二进制码,出现频率较低的字符编码为较长的二进制码,从而达到压缩数据的目的。哈夫曼编码的解码过程就是根据构建的二叉树进行反向遍历,将二进制码转换为原来的字符。 哈夫曼编码的具体步骤如下: 1. 统计待压缩数据中每个字符出现的频率,将其保存在一个字符频率表中。 2. 将字符频率表中的每个字符作为叶子节点,构建哈夫曼树。构建哈夫曼树的过程可以采用贪心算法,每次选取频率最小的两个节点合并。 3. 对哈夫曼树进行编码,从根节点开始遍历哈夫曼树,遇到左子节点为0,遇到右子节点为1。将每个字符的编码保存在一个编码表中。 4. 将待压缩数据中的每个字符转换为其对应的哈夫曼编码,并将所有编码拼接起来,形成压缩后的数据。 哈夫曼解码的具体步骤如下: 1. 读取压缩后的数据,并从根节点开始遍历哈夫曼树。 2. 遇到0则遍历左子节点,遇到1则遍历右子节点,直到遍历到叶子节点。 3. 根据叶子节点对应的字符进行解码,并将解码后的字符保存起来,直到所有编码都被解码完毕。
相关问题

c语言哈夫曼编码译码器课设,数据结构课程设计哈夫曼编码译码器

好的,您想了解关于C语言哈夫曼编码译码器课设和数据结构课程设计哈夫曼编码译码器的相关知识,我可以为您提供一些基本的信息。 哈夫曼编码是一种基于统计概率的编码方法,可以将每个字符使用不同长度的二进制编码表示,使得出现频率较高的字符使用较短的编码,出现频率较低的字符使用较长的编码,从而达到压缩数据的效果。 哈夫曼编码译码器的实现需要用到数据结构中的哈夫曼树和哈夫曼编码表。哈夫曼树是一种特殊的二叉树,它的叶子节点对应着每个字符,而每个字符的编码可以通过从根节点到该字符的路径上的边的方向来表示。哈夫曼编码表则是一个字符与其对应的二进制编码之间的映射表。 在C语言中,可以使用结构体来表示哈夫曼树和哈夫曼编码表。哈夫曼树的节点可以定义为一个结构体,包含字符、权值和左右子节点指针等属性。而哈夫曼编码表则可以定义为一个数组,每个元素表示一个字符与其对应的编码。 哈夫曼编码译码器的实现过程可以分为两个步骤:编码和译码。编码过程中,需要先统计原始数据中各个字符出现的频率,然后根据频率构建哈夫曼树,生成哈夫曼编码表,并将原始数据按照哈夫曼编码进行压缩。译码过程中,则需要通过哈夫曼编码表将压缩后的二进制数据还原成原始数据。 以上是关于C语言哈夫曼编码译码器课设和数据结构课程设计哈夫曼编码译码器的基本介绍,希望对您有所帮助。

用c语言哈夫曼编码和译码

以下是使用C语言实现哈夫曼编码和译码的示例代码,其中包含注释说明: ```c #include <stdio.h> #include <stdlib.h> #include <string.h> #define MAX_TREE_HT 100 // 哈夫曼树节点结构体 struct MinHeapNode { char data; unsigned freq; struct MinHeapNode *left, *right; }; // 哈夫曼树结构体 struct MinHeap { unsigned size; unsigned capacity; struct MinHeapNode **array; }; // 创建一个新的哈夫曼树节点 struct MinHeapNode* newNode(char data, unsigned freq) { struct MinHeapNode* temp = (struct MinHeapNode*)malloc(sizeof(struct MinHeapNode)); temp->left = temp->right = NULL; temp->data = data; temp->freq = freq; return temp; } // 创建一个新的哈夫曼树 struct MinHeap* createMinHeap(unsigned capacity) { struct MinHeap* minHeap = (struct MinHeap*)malloc(sizeof(struct MinHeap)); minHeap->size = 0; minHeap->capacity = capacity; minHeap->array = (struct MinHeapNode**)malloc(minHeap->capacity * sizeof(struct MinHeapNode*)); return minHeap; } // 交换两个哈夫曼树节点 void swapMinHeapNode(struct MinHeapNode** a, struct MinHeapNode** b) { struct MinHeapNode* t = *a; *a = *b; *b = t; } // 维护最小堆的性质 void minHeapify(struct MinHeap* minHeap, int idx) { int smallest = idx; int left = 2 * idx + 1; int right = 2 * idx + 2; if (left < minHeap->size && minHeap->array[left]->freq < minHeap->array[smallest]->freq) smallest = left; if (right < minHeap->size && minHeap->array[right]->freq < minHeap->array[smallest]->freq) smallest = right; if (smallest != idx) { swapMinHeapNode(&minHeap->array[smallest], &minHeap->array[idx]); minHeapify(minHeap, smallest); } } // 判断堆是否只有一个节点 int isSizeOne(struct MinHeap* minHeap) { return (minHeap->size == 1); } // 从堆中取出最小的节点 struct MinHeapNode* extractMin(struct MinHeap* minHeap) { struct MinHeapNode* temp = minHeap->array[0]; minHeap->array[0] = minHeap->array[minHeap->size - 1]; --minHeap->size; minHeapify(minHeap, 0); return temp;} // 插入一个新的节点到堆中 void insertMinHeap(struct MinHeap* minHeap, struct MinHeapNode* minHeapNode) { ++minHeap->size; int i = minHeap->size - 1; while (i && minHeapNode->freq < minHeap->array[(i - 1) / 2]->freq) { minHeap->array[i] = minHeap->array[(i - 1) / 2]; i = (i - 1) / 2; } minHeap->array[i] = minHeapNode; } // 判断节点是否是叶子节点 int isLeaf(struct MinHeapNode* root) { return !(root->left) && !(root->right); } // 创建一个新的哈夫曼树 struct MinHeap* createAndBuildMinHeap(char data[], int freq[], int size) { struct MinHeap* minHeap = createMinHeap(size); for (int i = 0; i < size; ++i) minHeap->array[i] = newNode(data[i], freq[i]); minHeap->size = size; for (int i = (minHeap->size - 1) / 2; i >= 0; --i) minHeapify(minHeap, i); return minHeap; } // 构建哈夫曼树 struct MinHeapNode* buildHuffmanTree(char data[], int freq[], int size) { struct MinHeapNode *left, *right, *top; struct MinHeap* minHeap = createAndBuildMinHeap(data, freq, size); while (!isSizeOne(minHeap)) { left = extractMin(minHeap); right = extractMin(minHeap); top = newNode('$', left->freq + right->freq); top->left = left; top->right = right; insertMinHeap(minHeap, top); } return extractMin(minHeap); } // 打印哈夫曼编码 void printCodes(struct MinHeapNode* root, int arr[], int top) { if (root->left) { arr[top] = 0; printCodes(root->left, arr, top + 1); } if (root->right) { arr[top] = 1; printCodes(root->right, arr, top + 1); } if (isLeaf(root)) { printf("%c: ", root->data); for (int i = 0; i < top; ++i) printf("%d", arr[i]); printf("\n"); } } // 哈夫曼编码主函数 void HuffmanCodes(char data[], int freq[], int size) { struct MinHeapNode* root = buildHuffmanTree(data, freq, size); int arr[MAX_TREE_HT], top = 0; printCodes(root, arr, top); } // 哈夫曼译码主函数 void decodeHuffman(struct MinHeapNode* root, char* s) { struct MinHeapNode* curr = root; while (*s) { if (*s == '0') curr = curr->left; else curr = curr->right; if (isLeaf(curr)) { printf("%c", curr->data); curr = root; } ++s; } } // 计算信源熵 float calculateEntropy(int freq[], int size) { float entropy = 0.0; int total = 0; for (int i = 0; i < size; ++i) total += freq[i]; for (int i = 0; i < size; ++i) { float p = (float)freq[i] / total; entropy -= p * log2(p); } return entropy; } // 计算平均编码长度 float calculateAvgCodeLength(int freq[], int size, int codes[][MAX_TREE_HT]) { float avgCodeLength = 0.0; int total = 0; for (int i = 0; i < size; ++i) total += freq[i]; for (int i = 0; i < size; ++i) { float p = (float)freq[i] / total; int len = strlen((char*)codes[i]); avgCodeLength += p * len; } return avgCodeLength; } int main() { char data[] = {'a', 'b', 'c', 'd', 'e', 'f'}; int freq[] = {5, 9, 12, 13, 16, 45}; int size = sizeof(data) / sizeof(data[0]); printf("Huffman Codes:\n"); HuffmanCodes(data, freq, size); printf("\n"); char str[] = "101010000111110101011100"; printf("Decoded Huffman data: "); decodeHuffman(buildHuffmanTree(data, freq, size), str); printf("\n"); printf("Entropy: %f\n", calculateEntropy(freq, size)); int codes[size][MAX_TREE_HT]; for (int i = 0; i < size; ++i) memset(codes[i], 0, sizeof(codes[i])); int arr[MAX_TREE_HT], top = 0; printCodes(buildHuffmanTree(data, freq, size), arr, top); printf("Average Code Length: %f\n", calculateAvgCodeLength(freq, size, codes)); return 0; } ```

相关推荐

最新推荐

recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

SQL怎么实现 数据透视表

SQL可以通过使用聚合函数和GROUP BY子句来实现数据透视表。 例如,假设有一个销售记录表,其中包含产品名称、销售日期、销售数量和销售额等信息。要创建一个按照产品名称、销售日期和销售额进行汇总的数据透视表,可以使用以下SQL语句: ``` SELECT ProductName, SaleDate, SUM(SaleQuantity) AS TotalQuantity, SUM(SaleAmount) AS TotalAmount FROM Sales GROUP BY ProductName, SaleDate; ``` 该语句将Sales表按照ProductName和SaleDat
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这
recommend-type

使用vue3+elementsplus封装一个提示确认框的组件,要求将请求地址和确认框展示信息作为参数暴露出去

好的,下面是使用 Vue3 和 ElementPlus 封装一个提示确认框的组件,同时将请求地址和确认框展示信息作为参数暴露出去。 ```vue <template> <el-dialog title="确认提示" :visible.sync="dialogVisible" width="30%" :before-close="handleClose" > <p>{{ message }}</p> <span slot="footer" class="dialog-footer"> <el-button @click="di
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。
recommend-type

关系数据表示学习

关系数据卢多维奇·多斯桑托斯引用此版本:卢多维奇·多斯桑托斯。关系数据的表示学习机器学习[cs.LG]。皮埃尔和玛丽·居里大学-巴黎第六大学,2017年。英语。NNT:2017PA066480。电话:01803188HAL ID:电话:01803188https://theses.hal.science/tel-01803188提交日期:2018年HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaireUNIVERSITY PIERRE和 MARIE CURIE计算机科学、电信和电子学博士学院(巴黎)巴黎6号计算机科学实验室D八角形T HESIS关系数据表示学习作者:Ludovic DOS SAntos主管:Patrick GALLINARI联合主管:本杰明·P·伊沃瓦斯基为满足计算机科学博士学位的要求而提交的论文评审团成员:先生蒂埃里·A·退休记者先生尤尼斯·B·恩