多分类混淆矩阵微查准率

时间: 2023-11-08 22:04:23 浏览: 50
多分类模型的微查准率(Micro Precision)是一种综合了所有类别的查准率的指标。它将每个类别的真阳性(True Positive)和假阳性(False Positive)的数量加总,并计算总体的查准率。 微查准率的计算公式如下: ``` Micro Precision = sum(TP) / (sum(TP) + sum(FP)) ``` 其中,sum(TP)表示所有类别的真阳性的总和,sum(FP)表示所有类别的假阳性的总和。 要计算多分类模型的微查准率,需要先计算出每个类别的真阳性和假阳性的数量,后将它们加总,最后使用上述公式计算得出微查准率。 下面是一个示例代码,使用sklearn库计算多分类模型的微查准率: ```python from sklearn.metrics import precision_score import numpy as np # 假设有一个真实标签和预测标签的列表 y_true = [1, 2, 1, 3, 2, 1] y_pred = [1, 3, 2, 3, 2, 1] # 计算微查准率 micro_precision = precision_score(y_true, y_pred, average='micro') ``` 在上面的代码中,`y_true`和`y_pred`分别是真实标签和预测标签的列表。通过调用`precision_score`函数并将参数`average`设置为'micro',可以计算出多分类模型的微查准率。
相关问题

python多分类混淆矩阵查准率计算公式

在Python中,可以使用混淆矩阵来计算多分类模型的查准率(Precision)。 查准率表示模型预测为某个类别的样本中,真实属于该类别的比例。计算查准率的公式如下: ``` Precision = TP / (TP + FP) ``` 其中,TP表示模型正确预测为该类别的样本数量,FP表示模型将其他类别的样本错误地预测为该类别的数量。 下面是一个示例代码,使用sklearn库计算多分类模型的查准率: ```python from sklearn.metrics import confusion_matrix # 假设有一个真实标签和预测标签的列表 y_true = [1, 2, 1, 3, 2, 1] y_pred = [1, 3, 2, 3, 2, 1] # 计算混淆矩阵 confusion_mat = confusion_matrix(y_true, y_pred) # 获取每个类别的TP和FP TP = confusion_mat.diagonal() FP = confusion_mat.sum(axis=0) - TP # 计算查准率 precision = TP / (TP + FP) ``` 在上面的代码中,`y_true`和`y_pred`分别是真实标签和预测标签的列表。通过`confusion_matrix`函数计算混淆矩阵,然后根据混淆矩阵计算每个类别的TP和FP,最后使用上述公式计算查准率。

python混淆矩阵查准率

以下是使用scikit-learn包计算混淆矩阵并计算查准率的Python代码示例: ```python from sklearn.metrics import confusion_matrix # 假设y_true是真实标签,y_pred是预测标签 y_true = [0, 1, 0, 1, 1, 0] y_pred = [0, 1, 1, 1, 0, 0] # 计算混淆矩阵 cm = confusion_matrix(y_true, y_pred) # 提取混淆矩阵中的各项值 tn, fp, fn, tp = cm.ravel() # 计算查准率 precision = tp / (tp + fp) print("混淆矩阵:") print(cm) print("查准率:", precision) ``` 这段代码首先导入了`confusion_matrix`函数,然后定义了真实标签`y_true`和预测标签`y_pred`。接下来,使用`confusion_matrix`函数计算混淆矩阵,并使用`ravel`函数将混淆矩阵展平为一维数组。然后,从展平后的数组中提取真阴性(tn)、假阳性(fp)、假阴性(fn)和真阳性(tp)的值。最后,通过计算查准率,即真阳性数除以真阳性数加假阳性数,得到查准率的值。

相关推荐

最新推荐

recommend-type

机器学习基础概念:查准率、查全率、ROC、混淆矩阵、F1-Score 机器学习实战:分类器

机器学习:基础概念查准率、查全率F1-Score、ROC、混淆矩阵机器学习实战:分类器性能考核方法:使用交叉验证测量精度性能考核方法:混淆矩阵精度和召回率ROC曲线训练一个随机森林分类器,并计算ROC和ROC AUC分数 查...
recommend-type

深度学习自学记录(3)——两种多分类混淆矩阵的Python实现(含代码)

深度学习自学记录(3)——两种多分类混淆矩阵的Python实现(含代码)1、什么是混淆矩阵2、分类模型评价指标3、两种多分类混淆矩阵3.1直接打印出每一个类别的分类准确率。3.2打印具体的分类结果的数值4、总结 1、...
recommend-type

python sklearn包——混淆矩阵、分类报告等自动生成方式

今天小编就为大家分享一篇python sklearn包——混淆矩阵、分类报告等自动生成方式,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
recommend-type

分类问题(二)混淆矩阵,Precision与Recall

衡量一个分类器性能的更好的办法是混淆矩阵。它基于的思想是:计算类别A被分类为类别B的次数。例如在查看分类器将图片5分类成图片3时,我们会看混淆矩阵的第5行以及第3列。 为了计算一个混淆矩阵,我们首先需要有一...
recommend-type

利用python中的matplotlib打印混淆矩阵实例

总的来说,通过matplotlib绘制混淆矩阵,我们可以更直观地了解分类模型的性能,特别是在多类别分类问题中,它能帮助我们识别模型在哪些类别上表现更好,哪些类别上可能出现误判。这种可视化对于调整模型参数和改进...
recommend-type

利用迪杰斯特拉算法的全国交通咨询系统设计与实现

全国交通咨询模拟系统是一个基于互联网的应用程序,旨在提供实时的交通咨询服务,帮助用户找到花费最少时间和金钱的交通路线。系统主要功能包括需求分析、个人工作管理、概要设计以及源程序实现。 首先,在需求分析阶段,系统明确了解用户的需求,可能是针对长途旅行、通勤或日常出行,用户可能关心的是时间效率和成本效益。这个阶段对系统的功能、性能指标以及用户界面有明确的定义。 概要设计部分详细地阐述了系统的流程。主程序流程图展示了程序的基本结构,从开始到结束的整体运行流程,包括用户输入起始和终止城市名称,系统查找路径并显示结果等步骤。创建图算法流程图则关注于核心算法——迪杰斯特拉算法的应用,该算法用于计算从一个节点到所有其他节点的最短路径,对于求解交通咨询问题至关重要。 具体到源程序,设计者实现了输入城市名称的功能,通过 LocateVex 函数查找图中的城市节点,如果城市不存在,则给出提示。咨询钱最少模块图是针对用户查询花费最少的交通方式,通过 LeastMoneyPath 和 print_Money 函数来计算并输出路径及其费用。这些函数的设计体现了算法的核心逻辑,如初始化每条路径的距离为最大值,然后通过循环更新路径直到找到最短路径。 在设计和调试分析阶段,开发者对源代码进行了严谨的测试,确保算法的正确性和性能。程序的执行过程中,会进行错误处理和异常检测,以保证用户获得准确的信息。 程序设计体会部分,可能包含了作者在开发过程中的心得,比如对迪杰斯特拉算法的理解,如何优化代码以提高运行效率,以及如何平衡用户体验与性能的关系。此外,可能还讨论了在实际应用中遇到的问题以及解决策略。 全国交通咨询模拟系统是一个结合了数据结构(如图和路径)以及优化算法(迪杰斯特拉)的实用工具,旨在通过互联网为用户提供便捷、高效的交通咨询服务。它的设计不仅体现了技术实现,也充分考虑了用户需求和实际应用场景中的复杂性。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战演练】基于TensorFlow的卷积神经网络图像识别项目

![【实战演练】基于TensorFlow的卷积神经网络图像识别项目](https://img-blog.csdnimg.cn/20200419235252200.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3FxXzM3MTQ4OTQw,size_16,color_FFFFFF,t_70) # 1. TensorFlow简介** TensorFlow是一个开源的机器学习库,用于构建和训练机器学习模型。它由谷歌开发,广泛应用于自然语言
recommend-type

CD40110工作原理

CD40110是一种双四线双向译码器,它的工作原理基于逻辑编码和译码技术。它将输入的二进制代码(一般为4位)转换成对应的输出信号,可以控制多达16个输出线中的任意一条。以下是CD40110的主要工作步骤: 1. **输入与编码**: CD40110的输入端有A3-A0四个引脚,每个引脚对应一个二进制位。当你给这些引脚提供不同的逻辑电平(高或低),就形成一个四位的输入编码。 2. **内部逻辑处理**: 内部有一个编码逻辑电路,根据输入的四位二进制代码决定哪个输出线应该导通(高电平)或保持低电平(断开)。 3. **输出**: 输出端Y7-Y0有16个,它们分别与输入的编码相对应。当特定的
recommend-type

全国交通咨询系统C++实现源码解析

"全国交通咨询系统C++代码.pdf是一个C++编程实现的交通咨询系统,主要功能是查询全国范围内的交通线路信息。该系统由JUNE于2011年6月11日编写,使用了C++标准库,包括iostream、stdio.h、windows.h和string.h等头文件。代码中定义了多个数据结构,如CityType、TrafficNode和VNode,用于存储城市、交通班次和线路信息。系统中包含城市节点、交通节点和路径节点的定义,以及相关的数据成员,如城市名称、班次、起止时间和票价。" 在这份C++代码中,核心的知识点包括: 1. **数据结构设计**: - 定义了`CityType`为short int类型,用于表示城市节点。 - `TrafficNodeDat`结构体用于存储交通班次信息,包括班次名称(`name`)、起止时间(原本注释掉了`StartTime`和`StopTime`)、运行时间(`Time`)、目的地城市编号(`EndCity`)和票价(`Cost`)。 - `VNodeDat`结构体代表城市节点,包含了城市编号(`city`)、火车班次数(`TrainNum`)、航班班次数(`FlightNum`)以及两个`TrafficNodeDat`数组,分别用于存储火车和航班信息。 - `PNodeDat`结构体则用于表示路径中的一个节点,包含城市编号(`City`)和交通班次号(`TraNo`)。 2. **数组和变量声明**: - `CityName`数组用于存储每个城市的名称,按城市编号进行索引。 - `CityNum`用于记录城市的数量。 - `AdjList`数组存储各个城市的线路信息,下标对应城市编号。 3. **算法与功能**: - 系统可能实现了Dijkstra算法或类似算法来寻找最短路径,因为有`MinTime`和`StartTime`变量,这些通常与路径规划算法有关。 - `curPath`可能用于存储当前路径的信息。 - `SeekCity`函数可能是用来查找特定城市的函数,其参数是一个城市名称。 4. **编程语言特性**: - 使用了`#define`预处理器指令来设置常量,如城市节点的最大数量(`MAX_VERTEX_NUM`)、字符串的最大长度(`MAX_STRING_NUM`)和交通班次的最大数量(`MAX_TRAFFIC_NUM`)。 - `using namespace std`导入标准命名空间,方便使用iostream库中的输入输出操作。 5. **编程实践**: - 代码的日期和作者注释显示了良好的编程习惯,这对于代码维护和团队合作非常重要。 - 结构体的设计使得数据组织有序,方便查询和操作。 这个C++代码实现了全国交通咨询系统的核心功能,涉及城市节点管理、交通班次存储和查询,以及可能的路径规划算法。通过这些数据结构和算法,用户可以查询不同城市间的交通信息,并获取最优路径建议。