利用python实现:选用复化梯形公式,复化Simpson公式和Romberg公式,编写这两个公式的程序
时间: 2024-05-16 12:13:22 浏览: 102
下面是三种数值积分方法的Python代码实现:
复化梯形公式:
```python
def trapezoid(f, a, b, n):
h = (b - a) / n
s = 0.5 * (f(a) + f(b))
for i in range(1, n):
s += f(a + i * h)
return h * s
```
复化Simpson公式:
```python
def simpson(f, a, b, n):
if n % 2 == 1:
raise ValueError("n must be even.")
h = (b - a) / n
s = f(a) + f(b)
for i in range(1, n, 2):
s += 4 * f(a + i * h)
for i in range(2, n-1, 2):
s += 2 * f(a + i * h)
return h * s / 3
```
Romberg公式:
```python
def romberg(f, a, b, n):
r = [[0] * (n+1) for _ in range(n+1)]
h = b - a
r[0][0] = 0.5 * h * (f(a) + f(b))
for j in range(1, n+1):
h *= 0.5
s = 0
for k in range(1, 2**j, 2):
s += f(a + k * h)
r[j][0] = 0.5 * r[j-1][0] + s * h
for i in range(1, j+1):
r[j][i] = (4**i * r[j][i-1] - r[j-1][i-1]) / (4**i - 1)
return r[n][n]
```
其中,f是要被积函数,a和b是积分区间的下限和上限,n是分割的区间数。
阅读全文