t-sne在matlab中的实例应用

时间: 2023-06-25 20:02:58 浏览: 41
### 回答1: t-sne是一种流行的非线性降维算法,可用于将高维数据可视化为二维或三维空间中的分布。在Matlab中,t-sne可以通过使用“t-SNE Toolbox”扩展包实现。该工具包提供了一组功能丰富的函数,使用户能够轻松地将高维数据集转换为低维表示。 使用t-SNE Toolbox进行t-sne分析的基本流程如下: 1. 准备数据:将数据加载到Matlab工作空间中,并将其整理成一个矩阵,其中每一行对应于一个观测值,每一列对应于一个特征。 2. 配置参数: T-SNE Toolbox提供了几个参数,可用于控制t-sne分析的参数,例如,迭代次数、惯性、邻域尺度等。 3. 运行t-sne算法:使用t-SNE Toolbox提供的函数运行t-sne算法,从而将高维数据可视化为低维空间中的分布。 4. 可视化结果:在低维空间中可视化数据,并对其中的聚类、局部密度等进行分析,以获得对原始数据集的更深入的理解。 例如,可以使用t-SNE Toolbox中的“tsne_d”函数将高维数据降维到二维空间中,并使用“scatter”函数在二维空间中绘制散点图,展示从高维数据中提取的特征和模式。 总之,t-sne是一种常用的非线性降维算法,它可以帮助我们更好地理解高维数据集中的复杂模式,而在Matlab中,使用t-SNE Toolbox工具包能够很方便地实现这种算法,并可视化分析结果。 ### 回答2: t-SNE(T-Stochastic Neighbor Embedding)是一种用于数据降维和可视化的算法。在matlab中,用户可以使用t-SNE工具箱来实现t-SNE算法。 使用t-SNE工具箱的第一步是加载数据,可以将数据加载为矩阵或读取外部文件。然后,可以使用t-SNE函数将数据集投影到二维平面或三维空间中。在使用t-SNE函数之前,需要设置一些参数,例如迭代次数、数据集的维数、正则化参数等。用户还可以通过指定不同的颜色、符号和标签等方式来定制可视化图形。 t-SNE算法的一个实际应用是分析人脑神经元活动。可以将神经元活动数据投影到二维图中,并通过可视化来发现神经元之间的联系和集群。此外,t-SNE还可以在其他领域中被广泛应用,例如计算机视觉、自然语言处理和基因组学等领域。 ### 回答3: t-sne是一种流行的降维算法,它可以将高维数据映射到二维或三维空间,方便数据可视化和分析。在Matlab中,可以通过调用t-sne函数来实现这一过程。 在Matlab中调用t-sne函数的方法非常简单。首先,需要将数据读入Matlab中,并进行必要的预处理,如归一化和特征选择等。然后,调用t-sne函数,并设置一些参数,如输入数据、输出维度、学习率等。最后,可以将结果可视化,以便进一步分析和研究。 例如,假设我们有一个高维数据集,其中包含1000个样本和100个特征。我们想将这些数据映射到二维空间中以便进行可视化。在Matlab中,可以按照以下步骤操作: 1.读入数据并进行预处理,如标准化和PCA。 2.调用t-sne函数,设置参数。例如,我们可以设置输入数据为标准化后的数据、输出维度为2、学习率为200和迭代次数为1000。这个函数会返回一个二维矩阵,其中每一行表示一个样本在二维空间中的坐标。 3.将结果可视化,以便进一步分析和研究。在Matlab中,可以使用plot或scatter函数绘制散点图,其中x和y坐标为t-sne函数输出的二维矩阵的第一列和第二列。 t-sne在Matlab中的实例应用非常广泛,其应用范围包括图像识别、文本分类、时间序列分析等。无论是初学者还是专业人士,都可以轻松地使用这个强大的工具来降低数据的维度,增强数据可视化和分析的能力。

相关推荐

rar
matlab应用百例-matlab实用程序百例.rar 这是很实用的图像处理例子,一共100个,几乎包含完了常见的函数。 内容:1-32是:图形应用篇 33-66是:界面设计篇 67-84是:图形处理篇 85-100是:数值分析篇 实例1:三角函数曲线(1) 实例2:三角函数曲线(2) 实例3:图形的叠加 实例4:双y轴图形的绘制 实例5:单个轴窗口显示多个图形 实例6:图形标注 实例7:条形图形 实例8:区域图形 实例9:饼图的绘制 实例10:阶梯图 实例11:枝干图 实例12:罗盘图 实例13:轮廓图 实例14:交互式图形 实例15:变换的傅立叶函数曲线 实例16:劳伦兹非线形方程的无序活动 实例17:填充图 例18:条形图和阶梯形图 实例19:三维曲线图 实例20:图形的隐藏属性 实例21PEAKS函数曲线 实例22:片状图 实例23:视角的调整 实例24:向量场的绘制 实例25:灯光定位 实例26:柱状图 实例27:设置照明方式 实例28:羽状图 实例29:立体透视(1) 实例30:立体透视(2) 实例31:表面图形 实例32:沿曲线移动的小球 实例33:曲线转换按钮 实例34:栅格控制按钮 实例35:编辑框的使用 实例36:弹出式菜单 实例37:滑标的使用 实例38:多选菜单 实例39:菜单控制的使用 实例40:UIMENU菜单的应用 实例41:除法计算器 实例42:单选框的使用 实例43:添加环境效果 实例44:改变坐标轴范围 实例45:简单运算器 实例46:曲线色彩的修改 实例47:曲线标记 实例48:修改曲型 实例49:指定坐标轴范围 实例50:绘制不同函数曲线的用户界面 实例51:可设置函数曲线图视角的用户界面 实例52:可设置函数曲线图视角的用户界面 实例53:可设置函数曲线光源的用户界面 实例54:添加效果 实例55:查询日期 实例56:图形效果(1) 实例57:图形效果 实例58:可控制小球运动速度的用户界面 实例59:设置坐标轴纵横轴比 实例60:动态文本显示 实例61:浏览流体数据 实例62:简单计算器 实例63:字母统计 实例64:图形的几何操作 实例65:时间计算器 实例66:数字操作 实例67:图像的块操作 实例68:图形的过滤操作 实例69:图像的频率操作 实例70:函数变换 实例71:RADON函数变换 实例72:图像分析(1) 实例73:过滤图像 实例74:图像的区域处理 实例75:图像的颜色处置 实例76:交换显示图像 实例77:矢量数据的显示 实例78:图像分析(2) 实例79:图像逻辑操作 实例80:进度条的使用 例81:MRI数据的显示 实例82:图像类型转换 实例83:特殊的图像显示技术 实例84:图像的几何操作 实例85:拉个朗日插值 例86:三次样条插值法 实例87:NEWTON插值 实例88:hermite插值 实例89:mewton形式的hermite插值 实例90:平方根法 实例91:gauss消去法 实例92:三角分解法 实例93:jacobi迭代法 实例94:gauss迭代法 实例95:sor迭代法 实例96:最速下降法 实例97:共额梯度法 实例98:mewton迭代法 实例99:broyden迭代法 实例100:逆broyden迭代法
t-SNE(t-Distributed Stochastic Neighbor Embedding)是一种常用的降维算法,它可以将高维数据映射到二维或者三维空间中,以便进行可视化和分析。在Matlab中,可以使用tsne函数来进行t-SNE降维操作。 使用语法tsne(X)可以将高维数据X进行降维,并返回一个二维的嵌入矩阵Y。可以使用tsne(X,Name,Value)进行更加灵活的参数设置。 在使用tsne函数时,可以按照以下步骤进行操作: 1. 准备数据矩阵X,其中X的大小为1024x320,表示320个样本点,每个样本点是一个1024维的列向量。 2. 对数据矩阵X进行标准化处理,可以使用matrixNormalize函数来实现。 3. 如果有标签信息,可以将标签存储在label变量中。 4. 将数据矩阵X转置为行向量表示,因为tsne函数的输入要求以行向量表示。 5. 使用tsne函数对数据进行降维操作,得到一个大小为Nx2的矩阵Y,其中N为样本数量。 6. 如果有标签信息,可以使用gscatter函数将降维后的数据点进行可视化,不同类别的样本点会以不同的颜色进行区分。 除了基本的语法tsne(X)之外,还可以使用tsne(X,Name,Value)来进行更加灵活的参数设置。比如可以设置降维算法的具体实现方式(exact或者barneshut)、距离度量方式(默认是欧氏距离)、迭代次数等等。 总的来说,t-SNE是一种用于高维数据降维和可视化的常用算法,在Matlab中可以使用tsne函数来实现。123 #### 引用[.reference_title] - *1* *2* *3* [matlab利用t-SNE实现高维数据可视化(tsne函数用法实例)](https://blog.csdn.net/weixin_43849277/article/details/113096020)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 100%"] [ .reference_list ]
在MATLAB中使用t-SNE函数,需要先安装并加载Machine Learning Toolbox和Statistics and Machine Learning Toolbox。t-SNE(t-Distributed Stochastic Neighbor Embedding)是一种常用的降维和可视化算法,用于将高维数据映射到低维空间,同时保持数据之间的局部结构。 首先,我们需要准备一个数据集,可以是一个矩阵或向量。假设我们有一个名为X的矩阵,其中每行表示一个样本,每列表示一个特征。 接下来,我们可以使用tsne函数来执行t-SNE算法。该函数的基本用法如下: Y = tsne(X) 其中,X是输入的数据矩阵,Y是降维后得到的新矩阵,每行代表一个样本。 除了基本用法,tsne函数还提供了其他可选参数,以便我们根据需要进行自定义设置。例如,我们可以指定降维后的维度数量: Y = tsne(X, 'NumDimensions', 2) 此外,还可以设置Perplexity(困惑度)参数来调整t-SNE算法中的重要参数之一。Perplexity参数的值越大,则相对于局部结构的重视程度越高,需要根据实际情况进行调整。 Y = tsne(X, 'Perplexity', 50) 最后,我们可以使用scatter函数将降维后的结果进行可视化,以便更直观地了解数据分布的情况。 scatter(Y(:,1), Y(:,2)) 通过以上步骤,我们就可以使用MATLAB中的t-SNE函数对数据进行降维并得到相应的可视化结果了。当然,根据具体需求,我们可以进一步设置其他参数以及进行数据前处理等操作,以提高降维效果和可视化效果。
MATLAB中的T-SNE函数是用于将高维数据以二维坐标形式进行可视化的函数。该函数被称为t-Distributed Stochastic Neighbor Embedding (t-SNE),其作用是将高维数据映射到一个低维空间中,以便更容易地进行数据分析和可视化。 使用T-SNE函数的语法为:Y = tsne(X)或Y = tsne(X,Name,Value)。其中,X是一个数据矩阵,每一列表示一个高维数据样本,Y是一个二维矩阵,表示对应的低维坐标。 使用T-SNE函数的步骤如下: 1. 准备数据:将高维数据表示为一个数据矩阵X,其中每一列是一个高维数据样本,共320个样本点,每个样本点有1024维。 2. 数据预处理:对数据矩阵X进行标准化处理,以确保数据在不同维度上具有相同的尺度。 3. 设置标签:为每个样本点设置标签,以便在可视化时能够区分不同的类别。 4. 数据转置:由于T-SNE函数要求输入数据以行向量表示,因此需要将数据矩阵X转置。 5. 执行T-SNE:应用T-SNE算法,得到一个二维矩阵Y,其中每一行表示一个样本点在低维空间中的坐标。 6. 可视化结果:使用gscatter函数将Y中的坐标进行可视化,并根据标签进行颜色区分。 总结来说,MATLAB中的T-SNE函数可以帮助我们将高维数据映射到二维坐标系中,以便进行数据可视化和分析。通过该函数,我们可以更好地理解和解释数据之间的关系。123 #### 引用[.reference_title] - *1* *2* *3* [matlab利用t-SNE实现高维数据可视化(tsne函数用法实例)](https://blog.csdn.net/weixin_43849277/article/details/113096020)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 100%"] [ .reference_list ]
以下是MATLAB中t-SNE算法的源代码示例: matlab function mappedX = tsne(X, no_dims, initial_dims, perplexity) %TSNE t-distributed Stochastic Neighbor Embedding % % mappedX = tsne(X, no_dims, initial_dims, perplexity) % % The function runs the t-SNE algorithm on dataset X to reduce its % dimensionality to no_dims. The initial solution is given by initial_dims % and the perplexity of the Gaussian kernel is given by perplexity (typically % a value between 5 and 50). The variable mappedX returns the two-dimensional % data points in mappedX. % % Note: The algorithm is memory intensive; e.g. for N=5000, you will need % about 2GB of RAM. % % (C) Laurens van der Maaten, 2008 % University of California, San Diego if ~exist('no_dims', 'var') || isempty(no_dims) no_dims = 2; end if ~exist('initial_dims', 'var') || isempty(initial_dims) initial_dims = min(50, size(X, 2)); end if ~exist('perplexity', 'var') || isempty(perplexity) perplexity = 30; end % First check whether we already have an initial solution if size(X, 2) == 1 && no_dims == 1 % If X is one-dimensional, we only need to embed it in one dimension mappedX = X; return elseif no_dims > size(X, 2) % If the number of input dimensions is smaller than the desired number % of output dimensions, simply pad the matrix with zeros. warning(['Target dimensionality reduced to ' num2str(size(X, 2)) ' by PCA.']); no_dims = size(X, 2); end if ~exist('Y', 'var') || isempty(Y) Y = randn(size(X, 1), no_dims); end % Compute pairwise distances sum_X = sum(X .^ 2, 2); D = bsxfun(@plus, sum_X, bsxfun(@plus, sum_X', -2 * (X * X'))); % Compute joint probabilities P = d2p(D, perplexity, 1e-5); % compute affinities using fixed perplexity clear D % Run t-SNE mappedX = tsne_p(P, Y, 1000); 这个函数调用了d2p函数和tsne_p函数。其中d2p函数的代码如下: matlab function P = d2p(D, perplexity, tol) %D2P Identifies appropriate sigma's to get kk NNs up to some tolerance % % P = d2p(D, perplexity, tol) % % Identifies the appropriate sigma to obtain a Gaussian kernel matrix with a % certain perplexity (approximately constant conditional entropy) for a % set of Euclidean input distances D. The desired perplexity is specified % by perplexity. The function returns the final Gaussian kernel matrix P, % whose elements P_{i,j} represent the probability of observing % datapoint j given datapoint i, normalized so that the sum over all i and j % is 1. % % The function iteratively searches for a value of sigma that results in a % Gaussian distribution over the perplexity-defined number of nearest % neighbors of each point. % % Note: The function is designed for use with the large data sets and % requires sufficient memory to store the entire NxN distance matrix for % your NxP data matrix X. % % Note: The function may return P=NaN, indicating numerical difficulties. % In such cases, the 'tol' parameter should be increased and the function % should be rerun. % % The function is based on earlier MATLAB code by Laurens van der Maaten % (lvdmaaten@gmail.com) and uses ideas from the following paper: % % * D. L. D. Saul and S. T. Roweis. Think globally, fit locally: Unsupervised % learning of low dimensional manifolds. Journal of Machine Learning % Research 4(2003) 119-155. % % (C) Joshua V. Dillon, 2014 % Initialize some variables [n, ~] = size(D); % number of instances P = zeros(n, n); % empty probability matrix beta = ones(n, 1); % empty precision vector logU = log(perplexity); % log(perplexity) (H) % Compute P-values disp('Computing P-values...'); for i=1:n if mod(i, 500) == 0 disp(['Computed P-values ' num2str(i) ' of ' num2str(n) ' datapoints...']); end % Compute the Gaussian kernel and entropy for the current precision [P(i,:), beta(i)] = gaussiandist(D(i,:), tol, beta(i), logU); end disp('Mean value of sigma: '); disp(mean(sqrt(1 ./ beta))); % Make sure P-values are symmetric P = (P + P') ./ (2 * n); % Zero any negative values P(P < 0) = 0; end %------------------------------------------------------------------------- function [P, beta] = gaussiandist(x, tol, beta, logU) %GAUSSIANDIST Computes the Gaussian kernel and entropy for a perplexity %defined by logU. % % [P, beta] = gaussiandist(x, tol, beta, logU) % % Returns the Gaussian kernel and entropy for a given perplexity, defined % by logU, for the NxD matrix X. The function iteratively searches for a % value of sigma that results in a Gaussian distribution over the % perplexity-defined number of nearest neighbors of each point. % % Note: The function is designed for use with the large data sets and % requires sufficient memory to store the NxN distance matrix. % % Note: The function may return P=NaN, indicating numerical difficulties. % In such cases, the 'tol' parameter should be increased and the function % should be rerun. % % The function is based on earlier MATLAB code by Laurens van der Maaten % (lvdmaaten@gmail.com) and uses ideas from the following paper: % % * D. L. D. Saul and S. T. Roweis. Think globally, fit locally: Unsupervised % learning of low dimensional manifolds. Journal of Machine Learning % Research 4(2003) 119-155. % % (C) Joshua V. Dillon, 2014 % Initialize some variables [n, ~] = size(x); % number of instances P = zeros(1, n); % empty probability vector sumP = realmin; % minimum value to avoid log(0) K = 0; % number of nearest neighbors % Search for good sigma, iterating until we have the perplexity we want while abs(sumP - logU) > tol % Compute Gaussian kernel and entropy for current precision P = exp(-beta * x).^2; sumP = sum(P); H = log(sumP) + beta * sum(x .* P) / sumP; % Adjust beta according to the perplexity if isnan(H) beta = beta * 2; P = NaN(1, n); continue; end if H > logU betaNew = beta * 0.5; else betaNew = beta * 2; end % Update precision beta = betaNew; end % Return final Gaussian kernel row for this point P = P / sumP; end 最后,tsne_p函数的代码如下: matlab function Y = tsne_p(P, labels, no_dims) %TSNE_P Performs symmetric t-SNE on affinity matrix P % % Y = tsne_p(P, labels, no_dims) % % The function performs symmetric t-SNE on pairwise similarity matrix P % to reduce its dimensionality to no_dims. The matrix P is assumed to be % symmetric, sum up to 1, and have zeros on its diagonal. % The labels parameter is an optional vector of labels that can be used to % color the resulting scatter plot. The function returns the two-dimensional % data points in Y. % The perplexity is the only parameter the user normally needs to adjust. % In most cases, a value between 5 and 50 works well. % % Note: This implementation uses the "fast" version of t-SNE. This should % run faster than the original version but may also have different numerical % properties. % % Note: The function is memory intensive; e.g. for N=5000, you will need % about 2GB of RAM. % % (C) Laurens van der Maaten, 2008 % University of California, San Diego if ~exist('labels', 'var') labels = []; end if ~exist('no_dims', 'var') || isempty(no_dims) no_dims = 2; end % First check whether we already have an initial solution if size(P, 1) ~= size(P, 2) error('Affinity matrix P should be square'); end if ~isempty(labels) && length(labels) ~= size(P, 1) error('Mismatch in number of labels and size of P'); end % Initialize variables n = size(P, 1); % number of instances momentum = 0.5; % initial momentum final_momentum = 0.8; % value to which momentum is changed mom_switch_iter = 250; % iteration at which momentum is changed stop_lying_iter = 100; % iteration at which lying about P-values is stopped max_iter = 1000; % maximum number of iterations epsilon = 500; % initial learning rate min_gain = .01; % minimum gain for delta-bar-delta % Initialize the solution Y = randn(n, no_dims); dY = zeros(n, no_dims); iY = zeros(n, no_dims); gains = ones(n, no_dims); % Compute P-values P = P ./ sum(P(:)); P = max(P, realmin); P = P * 4; % early exaggeration P = min(P, 1e-12); % Lie about the P-vals to find better local minima P = P ./ sum(P(:)); P = max(P, realmin); const = sum(P(:) .* log(P(:))); for iter = 1:max_iter % Compute pairwise affinities sum_Y = sum(Y .^ 2, 2); num = 1 ./ (1 + bsxfun(@plus, sum_Y, bsxfun(@plus, sum_Y', -2 * (Y * Y')))); num(1:n+1:end) = 0; Q = max(num ./ sum(num(:)), realmin); % Compute gradient PQ = P - Q; for i=1:n dY(i,:) = sum(bsxfun(@times, PQ(:,i), bsxfun(@minus, Y, Y(i,:))), 1); end % Perform the update if iter < stop_lying_iter momentum = min_gain * momentum + (1 - min_gain) * dY; else momentum = final_momentum; end gains = (gains + .2) .* (sign(dY) ~= sign(iY)) + ... (gains * .8) .* (sign(dY) == sign(iY)); gains(gains < min_gain) = min_gain; iY = momentum; dY = gains .* momentum; Y = Y + dY; Y = bsxfun(@minus, Y, mean(Y, 1)); % Compute current value of cost function if ~rem(iter, 10) C = const - sum(P(:) .* log(Q(:))); if ~isempty(labels) disp(['Iteration ' num2str(iter) ': error is ' num2str(C) ', norm of gradient is ' num2str(norm(dY))]); end end % Stop lying about P-values if iter == stop_lying_iter P = P ./ 4; end end % Return solution if iter == max_iter disp(['Maximum number of iterations reached (' num2str(max_iter) ')']); end if ~isempty(labels) figure, scatter(Y(:,1), Y(:,2), 9, labels, 'filled'); end end
t-sne(t-Distributed Stochastic Neighbor Embedding)数据可视化是一种常用的降维算法,用于将高维数据映射到低维空间中,以便于数据的可视化展示。 在MATLAB中,我们可以使用已有的工具箱或自己编写程序来实现t-sne数据可视化。以下是一种用MATLAB编写程序的示例: 1. 导入数据:首先,我们需要导入待处理的高维数据。可以使用load函数或其他读取数据的函数将数据加载到MATLAB中。 2. 数据预处理:针对不同的数据类型和目的,我们可能需要对数据进行预处理。例如,可以进行归一化、去除异常值或缺失值等操作。 3. t-sne降维:接下来,使用tSNE函数进行降维。该函数可以设置不同的参数,如迭代次数、学习率、初始维度、输出维度等。例如,可以使用以下代码将数据降维到2维: rng('default'); % 设置随机种子,保证结果可复现 tsne_result = tsne(data, 'NumDimensions', 2); 4. 数据可视化:最后,使用MATLAB的绘图函数将降维后的数据可视化。常见的绘图函数包括scatter、scatter3、plot等。例如,可以使用以下代码将降维后的数据绘制成散点图: scatter(tsne_result(:, 1), tsne_result(:, 2)); 以上就是一个简单的t-sne数据可视化MATLAB程序的示例。根据具体的数据和需求,可能需要进行更多的参数配置和绘图设置。使用MATLAB的这些基本步骤,可以轻松实现t-sne数据可视化。
T-SNE(t-distributed stochastic neighbor embedding)是一种机器学习算法,用于将高维数据降维至2维或3维,并进行可视化。它的基本思想是,如果在高维空间中两个数据点相似,那么在降维后的低维空间中它们应该离得很近。 T-SNE是由Laurens van der Maaten和Geoffrey Hinton在2008年提出的,它是SNE算法的改进版本。相对于SNE算法,T-SNE进行了几个改进,包括将SNE改为对称SNE以提高计算效率,并在低维空间中使用t分布来解决拥挤问题并优化SNE算法在关注局部特征而忽略全局特征方面的问题。实际上,T-SNE很少被用于降维,其主要应用领域是数据可视化。 尽管T-SNE在可视化方面效果好于SNE,但由于一些限制,它在实际应用中并不常用于降维。首先,当我们发现数据需要降维时,一般会使用线性降维算法如PCA,而不是非线性降维算法。其次,T-SNE通常将数据降到2维或3维进行可视化,但在降维时往往需要更高的维度,例如20维,而T-SNE算法使用自由度为1的t分布可能无法得到较好的效果。此外,T-SNE算法的计算复杂度较高,其目标函数是非凸的,可能得到局部最优解。 总的来说,T-SNE是一种适用于高维数据可视化的非线性降维算法,但在实际应用中需要考虑其计算复杂度和局限性。1234 #### 引用[.reference_title] - *1* *2* *3* [t-SNE算法](https://blog.csdn.net/sinat_20177327/article/details/80298645)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] - *4* [Machine Learning ——降维方法:t-SNE](https://blog.csdn.net/zzzzhy/article/details/80772833)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]

最新推荐

Java实现资源管理器的代码.rar

资源管理器是一种计算机操作系统中的文件管理工具,用于浏览和管理计算机文件和文件夹。它提供了一个直观的用户界面,使用户能够查看文件和文件夹的层次结构,复制、移动、删除文件,创建新文件夹,以及执行其他文件管理操作。 资源管理器通常具有以下功能: 1. 文件和文件夹的浏览:资源管理器显示计算机上的文件和文件夹,并以树状结构展示文件目录。 2. 文件和文件夹的复制、移动和删除:通过资源管理器,用户可以轻松地复制、移动和删除文件和文件夹。这些操作可以在计算机内的不同位置之间进行,也可以在计算机和其他存储设备之间进行。 3. 文件和文件夹的重命名:通过资源管理器,用户可以为文件和文件夹指定新的名称。 4. 文件和文件夹的搜索:资源管理器提供了搜索功能,用户可以通过关键词搜索计算机上的文件和文件夹。 5. 文件属性的查看和编辑:通过资源管理器,用户可以查看文件的属性,如文件大小、创建日期、修改日期等。有些资源管理器还允许用户编辑文件的属性。 6. 创建新文件夹和文件:用户可以使用资源管理器创建新的文件夹和文件,以便组织和存储文件。 7. 文件预览:许多资源管理器提供文件预览功能,用户

torchvision-0.6.0-cp36-cp36m-macosx_10_9_x86_64.whl

torchvision-0.6.0-cp36-cp36m-macosx_10_9_x86_64.whl

基于HTML5的移动互联网应用发展趋势.pptx

基于HTML5的移动互联网应用发展趋势.pptx

混合神经编码调制的设计和训练方法

可在www.sciencedirect.com在线获取ScienceDirectICTExpress 8(2022)25www.elsevier.com/locate/icte混合神经编码调制:设计和训练方法Sung Hoon Lima,Jiyong Hana,Wonjong Noha,Yujae Songb,Sang-WoonJeonc,a大韩民国春川,翰林大学软件学院b韩国龟尾国立技术学院计算机软件工程系,邮编39177c大韩民国安山汉阳大学电子电气工程系接收日期:2021年9月30日;接收日期:2021年12月31日;接受日期:2022年1月30日2022年2月9日在线发布摘要提出了一种由内码和外码组成的混合编码调制方案。外码可以是任何标准的二进制具有有效软解码能力的线性码(例如,低密度奇偶校验(LDPC)码)。内部代码使用深度神经网络(DNN)设计,该深度神经网络获取信道编码比特并输出调制符号。为了训练DNN,我们建议使用损失函数,它是受广义互信息的启发。所得到的星座图被示出优于具有5G标准LDPC码的调制�

利用Pandas库进行数据分析与操作

# 1. 引言 ## 1.1 数据分析的重要性 数据分析在当今信息时代扮演着至关重要的角色。随着信息技术的快速发展和互联网的普及,数据量呈爆炸性增长,如何从海量的数据中提取有价值的信息并进行合理的分析,已成为企业和研究机构的一项重要任务。数据分析不仅可以帮助我们理解数据背后的趋势和规律,还可以为决策提供支持,推动业务发展。 ## 1.2 Pandas库简介 Pandas是Python编程语言中一个强大的数据分析工具库。它提供了高效的数据结构和数据分析功能,为数据处理和数据操作提供强大的支持。Pandas库是基于NumPy库开发的,可以与NumPy、Matplotlib等库结合使用,为数

appium自动化测试脚本

Appium是一个跨平台的自动化测试工具,它允许测试人员使用同一套API来编写iOS和Android平台的自动化测试脚本。以下是一个简单的Appium自动化测试脚本的示例: ```python from appium import webdriver desired_caps = {} desired_caps['platformName'] = 'Android' desired_caps['platformVersion'] = '9' desired_caps['deviceName'] = 'Android Emulator' desired_caps['appPackage']

智能时代人机交互的一些思考.pptx

智能时代人机交互的一些思考.pptx

"基于自定义RC-NN的优化云计算网络入侵检测"

⃝可在www.sciencedirect.com在线获取ScienceDirectICTExpress 7(2021)512www.elsevier.com/locate/icte基于自定义RC-NN和优化的云计算网络入侵检测T.蒂拉加姆河ArunaVelTech Rangarajan博士Sagunthala研发科学技术研究所,印度泰米尔纳德邦钦奈接收日期:2020年8月20日;接收日期:2020年10月12日;接受日期:2021年4月20日2021年5月5日网上发售摘要入侵检测是保证信息安全的重要手段,其关键技术是对各种攻击进行准确分类。入侵检测系统(IDS)被认为是云网络环境中的一个重要安全问题。在本文中,IDS给出了一个创新的优化定制的RC-NN(递归卷积神经网络),提出了入侵检测与蚁狮优化算法的基础上。通过这种方法,CNN(卷积神经网络)与LSTM(长短期记忆)混合。因此,利用云的网络层识别的所有攻击被有效地分类。下面所示的实验结果描述了具有高精度的IDS分类模型的呈现,从而�

Shell脚本中的并发编程和多线程操作

# 一、引言 ## 1.1 介绍Shell脚本中并发编程和多线程操作的概念与意义 在Shell编程中,并发编程和多线程操作是指同时执行多个任务或操作,这在处理大规模数据和提高程序执行效率方面非常重要。通过并发编程和多线程操作,可以实现任务的同时执行,充分利用计算资源,加快程序运行速度。在Shell脚本中,也可以利用并发编程和多线程操作来实现类似的效果,提高脚本的执行效率。 ## 1.2 探讨并发编程和多线程在IT领域的应用场景 在IT领域,并发编程和多线程操作被广泛应用于各种场景,包括但不限于: - Web服务器中处理并发请求 - 数据库操作中的并发访问和事务处理 - 大数据处理和分析

极端随机数python

为了生成极端随机数,我们可以使用Python的random模块中的SystemRandom类。SystemRandom类使用操作系统提供的随机源来生成随机数,因此它比random模块中的其他函数更加安全和随机。以下是一个生成极端随机数的例子: ```python import random sys_random = random.SystemRandom() extreme_random_number = sys_random.randint(-9223372036854775807, 9223372036854775807) print("Extreme random number: "