losses.update(loss.item(), batch_size) scaler.scale(loss).backward()
时间: 2024-05-28 14:11:30 浏览: 165
这两行代码是用于训练模型的。具体来说,第一行是更新损失函数的值,其中`loss.item()`是当前batch的损失值,`batch_size`是当前batch的大小。`losses`是一个用于存储损失函数值的对象,`update`方法将当前batch的损失值加入到`losses`中。
第二行代码是对损失函数进行反向传播和梯度计算。`scaler.scale(loss)`是使用PyTorch的`GradScaler`进行梯度缩放,这是为了防止在反向传播时出现梯度爆炸或梯度消失的情况。`backward()`是对模型的参数进行反向传播,计算梯度。
相关问题
pytorch部分代码如下:class LDAMLoss(nn.Module): def init(self, cls_num_list, max_m=0.5, weight=None, s=30): super(LDAMLoss, self).init() m_list = 1.0 / np.sqrt(np.sqrt(cls_num_list)) m_list = m_list * (max_m / np.max(m_list)) m_list = torch.cuda.FloatTensor(m_list) self.m_list = m_list assert s > 0 self.s = s # self.weight = weight if weight is not None: weight = torch.FloatTensor(weight).cuda() self.weight = weight self.cls_num_list = cls_num_list def forward(self, x, target): index = torch.zeros_like(x, dtype=torch.uint8) index_float = index.type(torch.cuda.FloatTensor) batch_m = torch.matmul(self.m_list[None, :], index_float.transpose(0,1)) # 0,1 batch_m = batch_m.view((x.size(0), 1)) # size=(batch_size, 1) (-1,1) x_m = x - batch_m output = torch.where(index, x_m, x) # return F.cross_entropy(self.s*output, target, weight=self.weight) if self.weight is not None: output = output * self.weight[None, :] target = torch.flatten(target) # 将 target 转换成 1D Tensor logit = output * self.s return F.cross_entropy(logit, target, weight=self.weight) for batch_idx, (data, target) in enumerate(train_loader): data, target = data.to(device, non_blocking=True), Variable(target).to(device,non_blocking=True) # 3、将数据输入mixup_fn生成mixup数据 samples, targets = mixup_fn(data, target) # 4、将上一步生成的数据输入model,输出预测结果,再计算loss output = model(samples) # 5、梯度清零(将loss关于weight的导数变成0) optimizer.zero_grad() loss = criterion_train(output, targets) # 6、若使用混合精度 if use_amp: with torch.cuda.amp.autocast(): # 开启混合精度 # loss = torch.nan_to_num(criterion_train(output, target_a, target_b, lam)) # 计算loss # loss = lam * criterion_train(output, target_a) + (1 - lam) * criterion_train(output, target_b) # 计算 mixup 后的损失函数 scaler.scale(loss).backward() # 梯度放大 torch.nn.utils.clip_grad_norm_(model.parameters(), CLIP_GRAD) # 梯度裁剪,防止梯度爆炸 scaler.step(optimizer) # 更新下一次迭代的scaler scaler.update() # 否则,直接反向传播求梯度 else: # loss = criterion_train(output, targets) loss.backward() torch.nn.utils.clip_grad_norm_(model.parameters(), CLIP_GRAD) optimizer.step() 报错:) File "/home/adminis/hpy/ConvNextV2_Demo/models/losses.py", line 48, in forward output = torch.where(index, x_m, x) RuntimeError: expected scalar type float but found c10::Half
这个错误通常是由于在定义 `index` 和 `index_float` 时,没有指定数据类型,导致数据类型不匹配。可以尝试将 `index` 和 `index_float` 的数据类型都指定为 `torch.cuda.FloatTensor`。修改代码如下:
```python
index = torch.zeros_like(x, dtype=torch.uint8).cuda()
index_float = index.type(torch.cuda.FloatTensor)
```
这样就可以保证 `index` 和 `index_float` 的数据类型都是 `torch.cuda.FloatTensor`,与其他计算中使用的数据类型匹配。
pytorch代码如下:class LDAMLoss(nn.Module): def init(self, cls_num_list, max_m=0.5, weight=None, s=30): super(LDAMLoss, self).init() m_list = 1.0 / np.sqrt(np.sqrt(cls_num_list)) m_list = m_list * (max_m / np.max(m_list)) m_list = torch.cuda.FloatTensor(m_list) self.m_list = m_list assert s > 0 self.s = s if weight is not None: weight = torch.FloatTensor(weight).cuda() self.weight = weight self.cls_num_list = cls_num_list def forward(self, x, target): index = torch.zeros_like(x, dtype=torch.uint8) index_float = index.type(torch.cuda.FloatTensor) batch_m = torch.matmul(self.m_list[None, :], index_float.transpose(1,0)) # 0,1 batch_m = batch_m.view((-1, 1)) # size=(batch_size, 1) (-1,1) x_m = x - batch_m output = torch.where(index, x_m, x) if self.weight is not None: output = output * self.weight[None, :] logit = output * self.s return F.cross_entropy(logit, target, weight=self.weight) classes=7, cls_num_list = np.zeros(classes) for , label in train_loader.dataset: cls_num_list[label] += 1 criterion_train = LDAMLoss(cls_num_list=cls_num_list, max_m=0.5, s=30) criterion_val = LDAMLoss(cls_num_list=cls_num_list, max_m=0.5, s=30) for batch_idx, (data, target) in enumerate(train_loader): data, target = data.to(device, non_blocking=True), Variable(target).to(device,non_blocking=True) # 3、将数据输入mixup_fn生成mixup数据 samples, targets = mixup_fn(data, target) targets = torch.tensor(targets).to(torch.long) # 4、将上一步生成的数据输入model,输出预测结果,再计算loss output = model(samples) # 5、梯度清零(将loss关于weight的导数变成0) optimizer.zero_grad() # 6、若使用混合精度 if use_amp: with torch.cuda.amp.autocast(): # 开启混合精度 loss = torch.nan_to_num(criterion_train(output, targets)) # 计算loss scaler.scale(loss).backward() # 梯度放大 torch.nn.utils.clip_grad_norm(model.parameters(), CLIP_GRAD) # 梯度裁剪,防止梯度爆炸 scaler.step(optimizer) # 更新下一次迭代的scaler scaler.update() 报错:File "/home/adminis/hpy/ConvNextV2_Demo/models/losses.py", line 53, in forward return F.cross_entropy(logit, target, weight=self.weight) File "/home/adminis/anaconda3/envs/wln/lib/python3.9/site-packages/torch/nn/functional.py", line 2824, in cross_entropy return torch._C._nn.cross_entropy_loss(input, target, weight, _Reduction.get_enum(reduction), ignore_index) RuntimeError: multi-target not supported at /pytorch/aten/src/THCUNN/generic/ClassNLLCriterion.cu:15
这个报错是因为 `target` 中包含了多个标签,而 `F.cross_entropy` 函数只支持单标签的情况。你可以将 `target` 转换成一个 1D 的 Tensor,其中每个元素表示一个样本的类别标签。可以使用 `torch.flatten()` 或者 `torch.view()` 来实现这个转换。修改后的代码如下:
```python
def forward(self, x, target):
index = torch.zeros_like(x, dtype=torch.uint8)
index_float = index.type(torch.cuda.FloatTensor)
batch_m = torch.matmul(self.m_list[None, :], index_float.transpose(1,0)) # 0,1
batch_m = batch_m.view((-1, 1)) # size=(batch_size, 1)
x_m = x - batch_m
output = torch.where(index, x_m, x)
if self.weight is not None:
output = output * self.weight[None, :]
target = torch.flatten(target) # 将 target 转换成 1D Tensor
logit = output * self.s
return F.cross_entropy(logit, target, weight=self.weight)
```
阅读全文