cnn-bilstm-attention模型的代码
时间: 2023-10-11 12:07:55 浏览: 266
基于CNN-BiLSTM-Attention模型的网络入侵检测方法的python实现源码.zip
5星 · 资源好评率100%
以下是使用PyTorch实现的CNN-BiLSTM-Attention模型的代码:
```python
import torch
import torch.nn as nn
class CNN_BiLSTM_Attention(nn.Module):
def __init__(self, vocab_size, embedding_dim, hidden_dim, output_dim, dropout, filter_sizes, num_filters):
super().__init__()
self.embedding = nn.Embedding(vocab_size, embedding_dim)
self.convs = nn.ModuleList([
nn.Conv2d(in_channels=1,
out_channels=num_filters,
kernel_size=(fs, embedding_dim))
for fs in filter_sizes
])
self.lstm = nn.LSTM(embedding_dim, hidden_dim, bidirectional=True, batch_first=True)
self.dropout = nn.Dropout(dropout)
self.fc = nn.Linear(hidden_dim*2, output_dim)
self.attention = nn.Linear(hidden_dim*2, 1)
def forward(self, text):
embedded = self.embedding(text) # [batch_size, seq_len, embedding_dim]
embedded = embedded.unsqueeze(1) # [batch_size, 1, seq_len, embedding_dim]
conved = [torch.relu(conv(embedded)).squeeze(3) for conv in self.convs] # [(batch_size, num_filters, seq_len - filter_size + 1), ...]
pooled = [nn.functional.max_pool1d(conv, conv.shape[2]).squeeze(2) for conv in conved] # [(batch_size, num_filters), ...]
cat = self.dropout(torch.cat(pooled, dim=1)) # [batch_size, num_filters * len(filter_sizes)]
lstm_output, (hidden, cell) = self.lstm(embedded) # lstm_output: [batch_size, seq_len, hidden_dim*2], hidden: [2, batch_size, hidden_dim], cell: [2, batch_size, hidden_dim]
lstm_output = self.dropout(lstm_output)
attention_weights = torch.softmax(self.attention(lstm_output), dim=1) # [batch_size, seq_len, 1]
attention_output = torch.sum(lstm_output * attention_weights, dim=1) # [batch_size, hidden_dim*2]
output = self.fc(torch.cat((cat, attention_output), dim=1))
return output
```
其中,`vocab_size`表示词汇表的大小,`embedding_dim`表示词向量的维度,`hidden_dim`表示LSTM的隐藏层维度,`output_dim`表示模型的输出维度,`dropout`表示dropout概率,`filter_sizes`表示卷积核的大小,`num_filters`表示卷积核的数量。
`forward()`方法中,首先通过`embedding`层将文本转换为词向量表示,然后使用`Conv2d`和`max_pool1d`对词向量进行卷积和池化操作,得到文本的卷积特征。接着,将词向量输入到LSTM中,得到LSTM的输出和隐藏状态。然后,通过`Linear`层和`softmax`计算注意力权重,将LSTM的输出和注意力权重相乘得到注意力输出。最后,将卷积特征和注意力输出拼接起来,通过`Linear`层得到模型的输出。
阅读全文