ITensor* inputTensor22_0[] = { conv22_cv2_0_2->getOutput(0), conv22_cv3_0_2->getOutput(0) };
时间: 2024-04-15 19:29:34 浏览: 111
如果您有两个张量 `conv22_cv2_0_2->getOutput(0)` 和 `conv22_cv3_0_2->getOutput(0)`,并且您想将它们作为输入张量传递给 `inputTensor22_0` 数组,您可以按照以下方式进行赋值:
```cpp
ITensor* inputTensor22_0[] = {conv22_cv2_0_2->getOutput(0), conv22_cv3_0_2->getOutput(0)};
```
这将创建一个包含两个指针的 `inputTensor22_0` 数组,分别指向 `conv22_cv2_0_2->getOutput(0)` 和 `conv22_cv3_0_2->getOutput(0)`。
现在,您可以使用 `inputTensor22_0` 数组中的这两个张量作为输入张量传递给其他函数或操作。请确保在使用这些指针之前,确保这两个张量是有效的,并且具有正确的生命周期管理。
相关问题
function s_o = ReBuild(xr,conv_t,w_t) % [xr,fs] = audioread(path); %读取指定路径的文件,fs为文件采样率 power_xr = Count(xr(:,1)); %计算声音平均功率 soud_left = xr(1:length(xr)); %声音左声道 soud_right = xr(length(xr)+1:end); %声音右声道 soud_left_d = resample(soud_left,1,8); %4倍下采样 soud_right_d = resample(soud_right,1,8); wid = 3; %初始化损失函数 fill = zeros(1,wid); s_left_0 = [fill,soud_left_d,fill]; s_right_0 = [fill,soud_right_d,fill]; s_left_1 = ResBlock(s_left_0,conv_t(2,:),conv_t(3,:)); s_right_1 = ResBlock(s_right_0,conv_t(2,:),conv_t(3,:)); s_left_1 = conv(s_left_1,conv_t(4,:)); s_right_1 = conv(s_right_1,conv_t(4,:)); s_left_2 = s_left_0(1+wid:end-wid) + s_left_1(1+4*wid:end-4*wid) * w_t; s_right_2 = s_right_0(1+wid:end-wid) + s_right_1(1+4*wid:end-4*wid) * w_t; s_left_2 = PixelShuffle(s_left_2,conv_t(6:13,:)); s_right_2 = PixelShuffle(s_right_2,conv_t(6:13,:)); s_left_2 = conv(s_left_2,conv_t(5,:)); s_right_2 = conv(s_right_2,conv_t(5,:)); s_left_2 = s_left_2(1+wid:end-wid); s_right_2 = s_right_2(1+wid:end-wid); power_s = Count(s_left_2(1,:)); power_mult = power_s / power_xr; s_left_2 = s_left_2 / (power_mult)^0.5; s_right_2 = s_right_2 / (power_mult)^0.5; s_o(:,1) = s_left_2; s_o(:,2) = s_right_2;
这段代码是一个音频信号重建的函数,输入参数包括原始音频信号xr、卷积核conv_t和权重w_t。函数首先计算原始音频信号的平均功率,然后将左右声道分离,并对每个声道进行四倍下采样。接着使用ResBlock函数进行残差块的计算,再通过卷积操作对结果进行处理。之后使用PixelShuffle函数进行像素混洗操作,最后进行归一化处理并输出重建后的音频信号s_o。
如果要等价实现下列代码,应该如何更改def edge_detection(image, type): if type == 'roberts': roberts_x = np.array([[-1, 0], [0, 1]]) roberts_y = np.array([[0, -1], [1, 0]]) # roberts 算子计算x和y方向的梯度 gradient_x_roberts = cv2.filter2D(image, -1, roberts_x) gradient_y_roberts = cv2.filter2D(image, -1, roberts_y) edges_roberts = cv2.add(np.abs(gradient_x_roberts), np.abs(gradient_y_roberts)) edges_roberts = np.uint8(edges_roberts) return edges_roberts elif type == 'prewitt': prewitt_x = np.array([[-1, 0, 1], [-1, 0, 1], [-1, 0, 1]]) prewitt_y = np.array([[-1, -1, -1], [0, 0, 0], [1, 1, 1]]) # prewitt 算子计算x和y方向的梯度 gradient_x_prewitt = cv2.filter2D(image, -1, prewitt_x) gradient_y_prewitt = cv2.filter2D(image, -1, prewitt_y) edges_prewitt = cv2.add(np.abs(gradient_x_prewitt), np.abs(gradient_y_prewitt)) edges_prewitt = np.uint8(edges_prewitt) return edges_prewitt elif type == 'sobel': # Sobel算子 sobel_x = np.array([[-1, 0, 1], [-2, 0, 2], [-1, 0, 1]]) sobel_y = np.array([[-1, -2, -1], [0, 0, 0], [1, 2, 1]]) # Sobel 算子计算x和y方向的梯度 gradient_x_sobel = cv2.filter2D(image, -1, sobel_x) gradient_y_sobel = cv2.filter2D(image, -1, sobel_y) edges_sobel = cv2.add(np.abs(gradient_x_sobel), np.abs(gradient_y_sobel)) edges_sobel = np.uint8(edges_sobel) return edges_sobel elif type == 'canny': edges = cv2.Canny(image, threshold1=50, threshold2=100) return edges else: raise NotImplementedError
为了实现等价功能,可以使用下列代码:
```python
def edge_detection(image, type):
if type == 'roberts':
roberts_x = np.array([[-1, 0], [0, 1]])
roberts_y = np.array([[0, -1], [1, 0]])
gradient_x_roberts = conv2d(image, roberts_x)
gradient_y_roberts = conv2d(image, roberts_y)
edges_roberts = np.abs(gradient_x_roberts) + np.abs(gradient_y_roberts)
edges_roberts = np.uint8(edges_roberts)
return edges_roberts
elif type == 'prewitt':
prewitt_x = np.array([[-1, 0, 1], [-1, 0, 1], [-1, 0, 1]])
prewitt_y = np.array([[-1, -1, -1], [0, 0, 0], [1, 1, 1]])
gradient_x_prewitt = conv2d(image, prewitt_x)
gradient_y_prewitt = conv2d(image, prewitt_y)
edges_prewitt = np.abs(gradient_x_prewitt) + np.abs(gradient_y_prewitt)
edges_prewitt = np.uint8(edges_prewitt)
return edges_prewitt
elif type == 'sobel':
sobel_x = np.array([[-1, 0, 1], [-2, 0, 2], [-1, 0, 1]])
sobel_y = np.array([[-1, -2, -1], [0, 0, 0], [1, 2, 1]])
gradient_x_sobel = conv2d(image, sobel_x)
gradient_y_sobel = conv2d(image, sobel_y)
edges_sobel = np.abs(gradient_x_sobel) + np.abs(gradient_y_sobel)
edges_sobel = np.uint8(edges_sobel)
return edges_sobel
elif type == 'canny':
edges = cv2.Canny(image, threshold1=50, threshold2=100)
return edges
else:
raise NotImplementedError
```
主要的改动在于使用了自定义的 `conv2d` 函数替换了原来的 `cv2.filter2D` 函数。由于 `cv2.filter2D` 函数的实现方式与 `conv2d` 函数有所不同,因此替换后需要重新计算梯度,并对梯度进行绝对值处理和类型转换。
阅读全文