package com.cyc; import com.cyc.Controller.HelloController; import org.junit.Test; import org.junit.runner.RunWith; import org.springframework.beans.factory.annotation.Autowired; import org.springframework.boot.test.context.SpringBootTest; import org.springframework.test.context.junit4.SpringRunner; @RunWith(SpringRunner.class) @SpringBootTest public class HelloTest { @Autowired private HelloController helloController; @Test public void helloControllerTest(){ System.out.println(helloController.helloSpringboot()); } }

时间: 2023-05-18 09:06:04 浏览: 240
这是一个使用 Spring Boot 进行单元测试的 Java 代码,其中通过 @Autowired 注解注入了一个 HelloController 对象,并调用了它的 helloSpringboot() 方法,将返回值打印到控制台。
相关问题

请解释此段代码class GATrainer(): def __init__(self, input_A, input_B): self.program = fluid.default_main_program().clone() with fluid.program_guard(self.program): self.fake_B = build_generator_resnet_9blocks(input_A, name="g_A")#真A-假B self.fake_A = build_generator_resnet_9blocks(input_B, name="g_B")#真B-假A self.cyc_A = build_generator_resnet_9blocks(self.fake_B, "g_B")#假B-复原A self.cyc_B = build_generator_resnet_9blocks(self.fake_A, "g_A")#假A-复原B self.infer_program = self.program.clone() diff_A = fluid.layers.abs( fluid.layers.elementwise_sub( x=input_A, y=self.cyc_A)) diff_B = fluid.layers.abs( fluid.layers.elementwise_sub( x=input_B, y=self.cyc_B)) self.cyc_loss = ( fluid.layers.reduce_mean(diff_A) + fluid.layers.reduce_mean(diff_B)) * cycle_loss_factor #cycle loss self.fake_rec_B = build_gen_discriminator(self.fake_B, "d_B")#区分假B为真还是假 self.disc_loss_B = fluid.layers.reduce_mean( fluid.layers.square(self.fake_rec_B - 1))###优化生成器A2B,所以判别器结果越接近1越好 self.g_loss_A = fluid.layers.elementwise_add(self.cyc_loss, self.disc_loss_B) vars = [] for var in self.program.list_vars(): if fluid.io.is_parameter(var) and var.name.startswith("g_A"): vars.append(var.name) self.param = vars lr = 0.0002 optimizer = fluid.optimizer.Adam( learning_rate=fluid.layers.piecewise_decay( boundaries=[ 100 * step_per_epoch, 120 * step_per_epoch, 140 * step_per_epoch, 160 * step_per_epoch, 180 * step_per_epoch ], values=[ lr, lr * 0.8, lr * 0.6, lr * 0.4, lr * 0.2, lr * 0.1 ]), beta1=0.5, name="g_A") optimizer.minimize(self.g_loss_A, parameter_list=vars)

这段代码定义了一个 GATrainer 类,用于训练图像转换模型 CycleGAN 中的生成器模型 g_A。在初始化函数中,它使用 PaddlePaddle 框架的 fluid.default_main_program() 函数克隆默认的主程序,并使用 with fluid.program_guard() 语句将克隆的程序设置为默认程序。接下来,它定义了四个生成器模型:self.fake_B、self.fake_A、self.cyc_A 和 self.cyc_B。其中,self.fake_B 和 self.fake_A 分别将输入的图像 input_A 和 input_B 转换为假的图像。self.cyc_A 和 self.cyc_B 则将生成的假图像 self.fake_B 和 self.fake_A 分别还原回原始图像 input_A 和 input_B。然后,它定义了一个 inference 程序,用于测试模型。接着,它计算了循环一致性损失和生成器损失。循环一致性损失是指将生成的假图像还原为原始图像的损失。生成器损失是指通过判别器模型将生成的假图像区分为真实图像或假图像的损失。最后,它定义了一个优化器,使用 Adam 优化算法对生成器模型进行优化,以最小化生成器损失。

解读以下代码 function Cell=SNL_data_extract(MultiCell,Qmax) for i=1:length(MultiCell) data=MultiCell(i).data; CycMax=max(data.cycle); cnt=1;clear Cyc Label; for j=1:CycMax Num=find(data.cycle==j); if(isempty(Num))continue;end tmp.current=data.current(Num); tmp.voltage=data.voltage(Num); tmp.chaQ=data.chaQ(Num); tmp.time=data.time(Num); tmp.Ca=max(data.disQ(Num)); if(((tmp.Ca/Qmax)>1.2)||((tmp.Ca/Qmax)<0.5))continue;end FindNum=find(tmp.current>0); if(isempty(FindNum))continue;end During_t=tmp.time(FindNum(end))-tmp.time(FindNum(1)); if(length(FindNum)<25||During_t<5e3)continue;end Cyc(cnt).I=tmp.current(FindNum); Cyc(cnt).V=tmp.voltage(FindNum); Cyc(cnt).Q=tmp.chaQ(FindNum); Cyc(cnt).t=tmp.time(FindNum);Cyc(cnt).t=Cyc(cnt).t-Cyc(cnt).t(1); Cyc(cnt).Ca=tmp.Ca; Label(cnt)=Cyc(cnt).Ca/Qmax; cnt=cnt+1; end Cell(i).Cyc=Cyc;Cell(i).Label=Label;Cell(i).Cellname=MultiCell(i).Cellname; end end

这段代码是一个名为SNL_data_extract的函数,它接受两个输入参数:MultiCell和Qmax。函数的目的是从MultiCell中提取数据并构建一个Cell结构。 函数通过循环遍历MultiCell中的元素。对于每个元素,它首先获取该元素的数据(data),然后找出数据中最大的cycle值(CycMax)。接下来,函数初始化一个计数器(cnt)和两个空数组Cyc和Label。 在内部循环中,函数遍历从1到CycMax的每个cycle值。对于每个cycle,它使用find函数找出data.cycle中等于当前cycle值的索引(Num)。如果Num为空,则跳过当前循环,继续下一个。 如果Num非空,函数从data中提取与Num对应索引位置的current、voltage、chaQ和time值,并将它们存储在临时结构体tmp中。tmp.Ca记录了data.disQ(Num)中的最大值。 接下来,函数检查tmp.Ca与Qmax的比值是否在1.2和0.5之间。如果不在此范围内,则跳过当前循环,继续下一个。 如果tmp.Ca与Qmax的比值在指定范围内,函数继续检查tmp.current中是否存在大于0的值。如果不存在,则跳过当前循环,继续下一个。 如果tmp.current中存在大于0的值,函数计算出tmp.time中第一个和最后一个大于0值的索引位置之间的时间间隔(During_t)。如果tmp.current的长度小于25或During_t小于5e3(5000),则跳过当前循环,继续下一个。 最后,如果通过上述所有检查,函数将tmp.current、tmp.voltage、tmp.chaQ、tmp.time和tmp.Ca存储在一个名为Cyc的结构体数组中,并将Cyc结构体数组和对应的Label值存储在Cell结构体数组中。同时,Cell(i).Cellname被设置为MultiCell(i).Cellname。 最终,函数返回构建的Cell结构体数组。
阅读全文

相关推荐

module DW01_add_tb; // Declare inputs and outputs reg [3:0] A; reg [3:0] B; reg CI; wire [3:0] SUM; wire CO; // Instantiate design under test DW01_add dut( .A(A), .B(B), .CI(CI), .SUM(SUM), .CO(CO) ); // Initialize inputs initial begin A = 4'b0000; B = 4'b0000; CI = 0; end // Adder test case task test_adder; // Test case 1: 0 + 0 with carry-in of 0 A = 4'b0000; B = 4'b0000; CI = 0; #10; if (SUM !== 4'b0000 || CO !== 1'b0) $display("Test failed! 0 + 0 should be 0 with carry-out of 0"); // Test case 2: 7 + 3 with carry-in of 0 A = 4'b0111; B = 4'b0011; CI = 0; #10; if (SUM !== 4'b1010 || CO !== 1'b0) $display("Test failed! 7 + 3 should be 10 with carry-out of 0"); // Test case 3: 5 + 11 with carry-in of 1 A = 4'b0101; B = 4'b1011; CI = 1; #10; if (SUM !== 4'b0001 || CO !== 1'b1) $display("Test failed! 5 + 11 should be 16 with carry-out of 1"); // Test case 4: 15+15 with carry-in of 1 A = 4'b1111; B = 4'b1111; CI = 1; #10; if (SUM !== 4'b1110 || CO !== 1'b1) $display("Overflow!!!"); endtask // Run test cases initial begin test_adder(); $finish; end endmodule // DW01_add_tb If I want to replace the delays, i.e, #10; in this piece of verilog code, by below code: integer cyc; initial cyc=1; always @ (posedge clk) begin cyc <= cyc+1; if(cyc==1)begin in_val1 <=4'd4; end else if (cyc==2) begin if (out_val1 !==8'b1) $stop; in_val <=4'd3; end else if (cyc==3)begin if(out_val1 !== 8'b10)$stop; in_val1 <= 4'd7; end else if(cyc==4) begin $write("ALL Finished \n"); $finish; end end in other words, using pound delay # is not allowed, how should I modify the code?

最新推荐

recommend-type

UDEC实例+详解one.doc

通过`cyc`命令执行了5000个周期的计算,并将结果保存在`nature.sav`文件中。 从输出的历史数据可以看出,边坡在荷载作用下,变坡点的x向和y向位移随时间发生变化。在模拟的最后100000个循环中,变坡点在x方向上的...
recommend-type

锐度(解析度)MTF定义及测试.doc

锐度,或者称为解析度,是衡量摄影图像质量的关键因素,直接影响着图像中细节的辨识程度。在图像处理和光学领域,锐度通常通过调制传递函数(MTF)来量化评估。MTF,全称Modulation Transfer Function,也被称为空间...
recommend-type

誉天HCIE-R&S面试宝典V3.0(原版)(1).pdf

誉天HCIE3.0面试宝典,知识点很详细讲解,有面试问题追问回答,准备HCIE面试的兄弟们可以看一看了。
recommend-type

使用STM32的单个普通定时器产生4路不同频率的方波

例如,如果定时器的时钟频率是72MHz,我们想要生成3456Hz的方波,那么Half_Cyc = 72M/(3456*2) = 41667。对于200kHz的方波,Half_Cyc = 72M/(200k*2) = 180。Half_Cyc代表方波的半周期。 4. **设置中断和比较寄存器...
recommend-type

基于net的超市管理系统源代码(完整前后端+sqlserver+说明文档+LW).zip

功能说明: 环境说明: 开发软件:VS 2017 (版本2017以上即可,不能低于2017) 数据库:SqlServer2008r2(数据库版本无限制,都可以导入) 开发模式:mvc。。。
recommend-type

Windows平台下的Fastboot工具使用指南

资源摘要信息:"Windows Fastboot.zip是一个包含了Windows环境下使用的Fastboot工具的压缩文件。Fastboot是一种在Android设备上使用的诊断和工程工具,它允许用户通过USB连接在设备的bootloader模式下与设备通信,从而可以对设备进行刷机、解锁bootloader、安装恢复模式等多种操作。该工具是Android开发者和高级用户在进行Android设备维护或开发时不可或缺的工具之一。" 知识点详细说明: 1. Fastboot工具定义: Fastboot是一种与Android设备进行交互的命令行工具,通常在设备的bootloader模式下使用,这个模式允许用户直接通过USB向设备传输镜像文件以及其他重要的设备分区信息。它支持多种操作,如刷写分区、读取设备信息、擦除分区等。 2. 使用环境: Fastboot工具原本是Google为Android Open Source Project(AOSP)提供的一个组成部分,因此它通常在Linux或Mac环境下更为原生。但由于Windows系统的普及性,许多开发者和用户需要在Windows环境下操作,因此存在专门为Windows系统定制的Fastboot版本。 3. Fastboot工具的获取与安装: 用户可以通过下载Android SDK平台工具(Platform-Tools)的方式获取Fastboot工具,这是Google官方提供的一个包含了Fastboot、ADB(Android Debug Bridge)等多种工具的集合包。安装时只需要解压到任意目录下,然后将该目录添加到系统环境变量Path中,便可以在任何位置使用Fastboot命令。 4. Fastboot的使用: 要使用Fastboot工具,用户首先需要确保设备已经进入bootloader模式。进入该模式的方法因设备而异,通常是通过组合特定的按键或者使用特定的命令来实现。之后,用户通过运行命令提示符或PowerShell来输入Fastboot命令与设备进行交互。常见的命令包括: - fastboot devices:列出连接的设备。 - fastboot flash [partition] [filename]:将文件刷写到指定分区。 - fastboot getvar [variable]:获取指定变量的值。 - fastboot reboot:重启设备。 - fastboot unlock:解锁bootloader,使得设备能够刷写非官方ROM。 5. Fastboot工具的应用场景: - 设备的系统更新或刷机。 - 刷入自定义恢复(如TWRP)。 - 在开发阶段对设备进行调试。 - 解锁设备的bootloader,以获取更多的自定义权限。 - 修复设备,例如清除用户数据分区或刷写新的boot分区。 - 加入特定的内核或修改系统分区。 6. 注意事项: 在使用Fastboot工具时需要格外小心,错误的操作可能会导致设备变砖或丢失重要数据。务必保证操作前已备份重要数据,并确保下载和刷入的固件是针对相应设备的正确版本。此外,不同的设备可能需要特定的驱动程序支持,因此在使用Fastboot之前还需要安装相应的USB驱动。 7. 压缩包文件说明: 资源中提到的"windows-fastboot.zip"是一个压缩文件,解压后应当包含一个或多个可执行文件、库文件等,这些文件合起来组成了Fastboot工具的Windows版本。解压后,用户应当参考解压后的文档或说明文件来进行安装和配置,以便能够正确地使用该工具。 总结而言,Fastboot作为一个功能强大的工具,它为Android设备的开发者和高级用户提供了一个界面简洁但功能全面的操作平台,以实现对设备深层次的控制。然而,它的使用要求用户具备一定的技术知识和经验,否则不当操作可能导致设备损坏。因此,使用Fastboot时应当谨慎并确保自己了解每个命令的具体含义和后果。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

DLMS规约深度剖析:从基础到电力通信标准的全面掌握

![DLMS规约基础介绍](https://afteracademy.com/images/what-is-data-model-in-dbms-and-what-are-its-types-hierarchical-model-48add64778fd4b8f.jpg) # 摘要 DLMS/COSEM是一种广泛应用于智能电网和电力计量领域的通信协议。本文首先介绍了DLMS规约的基础概念、起源以及核心技术原理,包括协议架构、数据模型、通信过程、数据封装与传输机制。随后,文章探讨了DLMS规约在电力通信中的实际应用,如智能电表和电网自动化系统的数据通信,并分析了DLMS规约的测试与验证方法。文
recommend-type

修改代码,使其正确运行

要使提供的代码能够正确运行,需要解决以下几个关键点: 1. **输入处理**:确保从控制台读取的文法规则和待解析字符串格式正确。 2. **FIRST集和FOLLOW集计算**:确保FIRST集和FOLLOW集的计算逻辑正确无误。 3. **预测分析表构建**:确保预测分析表的构建逻辑正确,并且能够处理所有可能的情况。 4. **LL(1)分析器**:确保LL(1)分析器能够正确解析输入字符串并输出解析过程。 以下是经过修改后的完整代码: ```java package com.example.demo10; import java.util.*; public class Main
recommend-type

Python机器学习基础入门与项目实践

资源摘要信息:"机器学习概述与Python在机器学习中的应用" 机器学习是人工智能的一个分支,它让计算机能够通过大量的数据学习来自动寻找规律,并据此进行预测或决策。机器学习的核心是建立一个能够从数据中学习的模型,该模型能够在未知数据上做出准确预测。这一过程通常涉及到数据的预处理、特征选择、模型训练、验证、测试和部署。 机器学习方法主要可以分为监督学习、无监督学习、半监督学习和强化学习。 监督学习涉及标记好的训练数据,其目的是让模型学会从输入到输出的映射。在这个过程中,模型学习根据输入数据推断出正确的输出值。常见的监督学习算法包括线性回归、逻辑回归、支持向量机(SVM)、决策树、随机森林和神经网络等。 无监督学习则是处理未标记的数据,其目的是探索数据中的结构。无监督学习算法试图找到数据中的隐藏模式或内在结构。常见的无监督学习算法包括聚类、主成分分析(PCA)、关联规则学习等。 半监督学习和强化学习则是介于监督学习和无监督学习之间的方法。半监督学习使用大量未标记的数据和少量标记数据进行学习,而强化学习则是通过与环境的交互来学习如何做出决策。 Python作为一门高级编程语言,在机器学习领域中扮演了非常重要的角色。Python之所以受到机器学习研究者和从业者的青睐,主要是因为其丰富的库和框架、简洁易读的语法以及强大的社区支持。 在Python的机器学习生态系统中,有几个非常重要的库: 1. NumPy:提供高性能的多维数组对象,以及处理数组的工具。 2. Pandas:一个强大的数据分析和操作工具库,提供DataFrame等数据结构,能够方便地进行数据清洗和预处理。 3. Matplotlib:一个用于创建静态、动态和交互式可视化的库,常用于生成图表和数据可视化。 4. Scikit-learn:一个简单且高效的工具,用于数据挖掘和数据分析,支持多种分类、回归、聚类算法等。 5. TensorFlow:由Google开发的开源机器学习库,适用于大规模的数值计算,尤其擅长于构建和训练深度学习模型。 6. Keras:一个高层神经网络API,能够使用TensorFlow、CNTK或Theano作为其后端进行计算。 机器学习的典型工作流程包括数据收集、数据预处理、特征工程、模型选择、训练、评估和部署。在这一流程中,Python可以贯穿始终,从数据采集到模型部署,Python都能提供强大的支持。 由于机器学习的复杂性,一个成功的机器学习项目往往需要跨学科的知识,包括统计学、数学、计算机科学、数据分析等领域。因此,掌握Python及其相关库的使用只是机器学习工作的一部分,还需要有扎实的理论基础和实践经验。 总结来说,机器学习是一个涉及数据挖掘、统计分析、算法优化等多个领域的综合性科学。Python由于其简洁的语法、丰富的库支持和强大的社区力量,成为了进行机器学习研究和应用开发的首选语言。随着技术的不断进步和算法的持续优化,机器学习的应用领域也在不断扩大,从早期的搜索引擎、推荐系统到现代的自动驾驶、医疗诊断等领域都有着广泛的应用。