pytorch环境下CIfer-10图像分类 代码
时间: 2023-12-14 16:03:16 浏览: 100
图像分类案例1.md
下面是一个使用 PyTorch 进行 CIFAR-10 图像分类的示例代码:
```python
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision.datasets as datasets
import torchvision.transforms as transforms
# 定义超参数
batch_size = 64
learning_rate = 0.001
num_epochs = 10
# 加载数据集并进行预处理
transform = transforms.Compose([
transforms.RandomHorizontalFlip(), # 随机水平翻转
transforms.RandomCrop(32, padding=4), # 随机裁剪
transforms.ToTensor(), # 转换为张量
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]) # 归一化
])
train_dataset = datasets.CIFAR10(root='./data', train=True, download=True, transform=transform)
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
test_dataset = datasets.CIFAR10(root='./data', train=False, download=True, transform=transform)
test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=batch_size, shuffle=False)
# 定义模型
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(3, 64, kernel_size=3, padding=1)
self.bn1 = nn.BatchNorm2d(64)
self.conv2 = nn.Conv2d(64, 128, kernel_size=3, padding=1)
self.bn2 = nn.BatchNorm2d(128)
self.conv3 = nn.Conv2d(128, 256, kernel_size=3, padding=1)
self.bn3 = nn.BatchNorm2d(256)
self.fc1 = nn.Linear(256 * 4 * 4, 1024)
self.fc2 = nn.Linear(1024, 10)
def forward(self, x):
x = nn.functional.relu(self.bn1(self.conv1(x)))
x = nn.functional.max_pool2d(x, 2)
x = nn.functional.relu(self.bn2(self.conv2(x)))
x = nn.functional.max_pool2d(x, 2)
x = nn.functional.relu(self.bn3(self.conv3(x)))
x = nn.functional.max_pool2d(x, 2)
x = x.view(-1, 256 * 4 * 4)
x = nn.functional.relu(self.fc1(x))
x = self.fc2(x)
return x
model = Net()
# 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=learning_rate)
# 训练模型
for epoch in range(num_epochs):
for i, (images, labels) in enumerate(train_loader):
# 前向传播
outputs = model(images)
loss = criterion(outputs, labels)
# 反向传播和优化
optimizer.zero_grad()
loss.backward()
optimizer.step()
# 每100个batch打印一次日志
if (i + 1) % 100 == 0:
print('Epoch [{}/{}], Batch [{}/{}], Loss: {:.4f}'.format(epoch + 1, num_epochs, i + 1, len(train_loader), loss.item()))
# 在测试集上测试模型
correct = 0
total = 0
with torch.no_grad():
for images, labels in test_loader:
outputs = model(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print('Test Accuracy of the model on the 10000 test images: {} %'.format(100 * correct / total))
# 保存模型
torch.save(model.state_dict(), 'cifar10.ckpt')
```
这个示例代码包括了以下几个步骤:
1. 加载数据集并进行预处理。
2. 定义模型,并将其前向传播的过程实现在 `forward` 方法中。
3. 定义损失函数和优化器。
4. 训练模型,并在测试集上测试模型。
5. 保存模型。
其中,数据集预处理的过程包括了随机水平翻转、随机裁剪、归一化等操作,模型的定义采用了卷积神经网络。你可以根据自己的需求对这个示例代码进行修改和扩展。
阅读全文