我目前正在通过python使用realsense相机有以下的需求:(1)显示彩色图像和深度图像(2)追踪图像里的三角形角点并显示到其的距离
时间: 2024-06-09 17:12:32 浏览: 75
好的,针对你的需求,你可以使用Intel RealSense SDK提供的Python API来实现。以下是一些基本的代码示例来帮助你实现你的需求:
1. 显示彩色图像和深度图像
```python
import pyrealsense2 as rs
import numpy as np
import cv2
# 创建RealSense深度相机对象
pipeline = rs.pipeline()
config = rs.config()
config.enable_stream(rs.stream.color, 640, 480, rs.format.bgr8, 30)
config.enable_stream(rs.stream.depth, 640, 480, rs.format.z16, 30)
pipeline.start(config)
try:
while True:
# 获取彩色图像和深度图像
frames = pipeline.wait_for_frames()
color_frame = frames.get_color_frame()
depth_frame = frames.get_depth_frame()
# 将深度图像转化为numpy数组
depth_image = np.asanyarray(depth_frame.get_data())
# 可视化深度图像
depth_colormap = cv2.applyColorMap(cv2.convertScaleAbs(depth_image, alpha=0.03), cv2.COLORMAP_JET)
# 显示彩色图像和深度图像
color_image = np.asanyarray(color_frame.get_data())
images = np.hstack((color_image, depth_colormap))
cv2.imshow('RealSense', images)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
finally:
# 停止相机采集
pipeline.stop()
cv2.destroyAllWindows()
```
2. 追踪图像里的三角形角点并显示到其的距离
```python
import pyrealsense2 as rs
import numpy as np
import cv2
# 创建RealSense深度相机对象
pipeline = rs.pipeline()
config = rs.config()
config.enable_stream(rs.stream.color, 640, 480, rs.format.bgr8, 30)
config.enable_stream(rs.stream.depth, 640, 480, rs.format.z16, 30)
pipeline.start(config)
# 创建角点追踪器
criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 0.001)
objp = np.zeros((6*9, 3), np.float32)
objp[:, :2] = np.mgrid[0:9, 0:6].T.reshape(-1, 2)
objpoints = [] # 存储物体点的世界坐标系下的坐标值
imgpoints = [] # 存储图像点的像素坐标值
while True:
# 获取彩色图像和深度图像
frames = pipeline.wait_for_frames()
color_frame = frames.get_color_frame()
depth_frame = frames.get_depth_frame()
# 将深度图像转化为numpy数组
depth_image = np.asanyarray(depth_frame.get_data())
# 可视化深度图像
depth_colormap = cv2.applyColorMap(cv2.convertScaleAbs(depth_image, alpha=0.03), cv2.COLORMAP_JET)
# 显示彩色图像和深度图像
color_image = np.asanyarray(color_frame.get_data())
images = np.hstack((color_image, depth_colormap))
cv2.imshow('RealSense', images)
# 在彩色图像中寻找角点
gray = cv2.cvtColor(color_image, cv2.COLOR_BGR2GRAY)
ret, corners = cv2.findChessboardCorners(gray, (9, 6), None)
# 如果找到了角点
if ret == True:
# 将角点坐标添加到objpoints和imgpoints中
objpoints.append(objp)
corners2 = cv2.cornerSubPix(gray, corners, (11, 11), (-1, -1), criteria)
imgpoints.append(corners2)
# 在彩色图像中绘制角点
color_image = cv2.drawChessboardCorners(color_image, (9, 6), corners2, ret)
# 计算角点的距离
x, y, z = corners2[0][0]
d = depth_image[int(y), int(x)]
text = "distance: " + str(d) + "mm"
cv2.putText(color_image, text, (int(x), int(y) - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 2)
# 显示彩色图像和深度图像
images = np.hstack((color_image, depth_colormap))
cv2.imshow('RealSense', images)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
# 停止相机采集
pipeline.stop()
cv2.destroyAllWindows()
```
希望以上代码示例能够帮助你实现你的需求!
阅读全文