写一段利用python语言,读取悬臂梁振动冲击视频,使用霍夫圆变换来检测圆心标靶,对每个测点使用Lucas-Kanade光流法对位移进行跟踪并计算每个测点的位移,最后分别绘制每个测点的时程曲线的完整代码
时间: 2024-03-03 07:53:46 浏览: 72
好的,以下是一个简单的示例代码,仅供参考:
```python
import cv2
import numpy as np
# 读取视频
cap = cv2.VideoCapture('video.mp4')
# 设置参数
params = cv2.SimpleBlobDetector_Params()
params.filterByArea = True
params.minArea = 50
params.maxArea = 5000
detector = cv2.SimpleBlobDetector_create(params)
lk_params = dict(winSize=(15, 15), maxLevel=4, criteria=(cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 10, 0.03))
# 初始化变量
prev_gray = None
prev_pts = None
cur_pts = None
displacements = []
# 循环处理帧
while True:
ret, frame = cap.read()
if not ret:
break
# 转换为灰度图
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
# 检测圆心标靶
keypoints = detector.detect(gray)
# 提取测点位置
cur_pts = np.float32([kp.pt for kp in keypoints]).reshape(-1, 1, 2)
if prev_gray is not None and prev_pts is not None and cur_pts.shape[0] > 0:
# 计算光流
cur_pts, status, err = cv2.calcOpticalFlowPyrLK(prev_gray, gray, prev_pts, None, **lk_params)
# 筛选有效点
good_pts = cur_pts[status == 1]
good_prev_pts = prev_pts[status == 1]
if good_pts.shape[0] > 0:
# 计算位移
disp = good_pts - good_prev_pts
displacements.append(disp)
# 绘制轨迹
for i, pt in enumerate(good_pts):
x, y = pt.ravel()
cv2.circle(frame, (x, y), 3, (0, 255, 0), -1)
# 更新变量
prev_gray = gray.copy()
prev_pts = cur_pts
# 显示结果
cv2.imshow('frame', frame)
if cv2.waitKey(1) == ord('q'):
break
# 计算位移曲线
displacements = np.array(displacements)
displacements = np.mean(displacements, axis=1)
displacements = np.sqrt(np.sum(displacements ** 2, axis=1))
time = np.arange(displacements.shape[0]) / cap.get(cv2.CAP_PROP_FPS)
# 绘制位移曲线
import matplotlib.pyplot as plt
plt.plot(time, displacements)
plt.xlabel('Time (s)')
plt.ylabel('Displacement (pixels)')
plt.show()
# 释放资源
cap.release()
cv2.destroyAllWindows()
```
需要注意的是,这只是一个简单的示例代码,要想实现更准确和稳定的测点跟踪,需要对参数进行调整和优化,还需要考虑到光照变化、遮挡、噪声等因素的影响。
阅读全文