禁忌搜索算法的matlab程序代码
时间: 2023-08-23 12:12:52 浏览: 89
禁忌搜索算法的Matlab程序代码可以根据算法的流程图和实现原理进行编写。以下是一个简单的禁忌搜索算法的Matlab程序代码示例:
```matlab
function [bestSolution, bestCost] = tabuSearch(initialSolution, tabuListSize, maxIterations)
currentSolution = initialSolution;
bestSolution = currentSolution;
bestCost = calculateCost(currentSolution);
tabuList = zeros(tabuListSize, size(initialSolution, 2));
for iteration = 1:maxIterations
candidateSolutions = generateCandidateSolutions(currentSolution);
candidateCosts = zeros(size(candidateSolutions, 1), 1);
for i = 1:size(candidateSolutions, 1)
if ~isTabu(candidateSolutions(i, :), tabuList)
candidateCosts(i) = calculateCost(candidateSolutions(i, :));
else
candidateCosts(i) = inf;
end
end
[minCost, minIndex] = min(candidateCosts);
currentSolution = candidateSolutions(minIndex, :);
if minCost < bestCost
bestSolution = currentSolution;
bestCost = minCost;
end
tabuList = updateTabuList(tabuList, currentSolution);
end
end
function cost = calculateCost(solution)
% 计算解的成本
% TODO: 根据具体问题定义成本函数
end
function candidateSolutions = generateCandidateSolutions(solution)
% 生成候选解
% TODO: 根据具体问题生成候选解
end
function isTabu = isTabu(solution, tabuList)
% 判断解是否在禁忌表中
isTabu = any(ismember(tabuList, solution, 'rows'));
end
function updatedTabuList = updateTabuList(tabuList, solution)
% 更新禁忌表
updatedTabuList = circshift(tabuList, [1, 0]);
updatedTabuList(1, :) = solution;
end
```
请注意,这只是一个简单的示例代码,具体的禁忌搜索算法的实现需要根据具体问题进行调整和优化。在实际应用中,您需要根据问题的特点和要求来定义成本函数、生成候选解的方法以及禁忌表的更新策略。
阅读全文