spark作业,请使用垃圾邮件数据集df_mail,将label列转换为数值类型,使用逻辑回归或决策树模型,将分词,TF-IDF,模型训练装配称为流水线,并评估模型的准确率。然后使用一段话作为测试数据,通过模型预测这段话的内容是否为垃圾邮件。
时间: 2023-12-10 17:06:02 浏览: 62
计算出训练集中垃圾邮件和非垃圾邮件的各类词频并保存下来,然后依次判断测试集中的各邮件是否是垃圾邮件.zip
好的,下面是实现步骤:
1.导入相关库和数据集
```python
from pyspark.ml.feature import Tokenizer, StopWordsRemover, CountVectorizer, IDF, StringIndexer
from pyspark.ml.classification import LogisticRegression, DecisionTreeClassifier
from pyspark.ml import Pipeline
from pyspark.ml.evaluation import BinaryClassificationEvaluator
from pyspark.sql.functions import col
df_mail = spark.read.format("csv").option("header", "true").load("df_mail.csv")
```
2.将label列转换为数值类型
```python
indexer = StringIndexer(inputCol="label", outputCol="labelIndex")
df_mail = indexer.fit(df_mail).transform(df_mail)
```
3.将分词,TF-IDF,模型训练装配称为流水线
```python
tokenizer = Tokenizer(inputCol="text", outputCol="words")
stopwords = StopWordsRemover(inputCol="words", outputCol="filtered")
cv = CountVectorizer(inputCol="filtered", outputCol="rawFeatures")
idf = IDF(inputCol="rawFeatures", outputCol="features", minDocFreq=5)
lr = LogisticRegression(featuresCol="features", labelCol="labelIndex", maxIter=10)
pipeline = Pipeline(stages=[tokenizer, stopwords, cv, idf, lr])
```
4.进行模型训练和评估
```python
(trainingData, testData) = df_mail.randomSplit([0.7, 0.3], seed=100)
model = pipeline.fit(trainingData)
predictions = model.transform(testData)
evaluator = BinaryClassificationEvaluator(rawPredictionCol="rawPrediction")
accuracy = evaluator.evaluate(predictions)
print("Accuracy:", accuracy)
```
5.使用测试数据进行预测
```python
test_data = [("Guaranteed to Lose 10-20 pounds in 30 days", )]
test_df = spark.createDataFrame(test_data, ["text"])
result = model.transform(test_df).select("text", "prediction").collect()[0]
print("Test Data:", result[0])
print("Prediction:", "Spam" if result[1] == 1.0 else "Not Spam")
```
最后,您需要将以上代码整合在一起并执行。注意,您需要将数据集文件路径替换为实际路径。
阅读全文