给出Python代码搭建LSTM网络处理本地已保存的新闻文本数据,并且给出相应的注释,并且给出一个优化后的LSTM网络
时间: 2024-02-28 20:53:52 浏览: 52
以下是搭建LSTM网络处理本地已保存的新闻文本数据的Python代码,并附有注释:
```python
# 导入需要的库
import numpy as np
import pandas as pd
import tensorflow as tf
from keras.preprocessing.text import Tokenizer
from keras.preprocessing.sequence import pad_sequences
from keras.models import Sequential
from keras.layers import Embedding, LSTM, Dense, Dropout
# 读取本地已保存的新闻数据
news_df = pd.read_csv('news.csv')
# 对新闻文本进行分词处理
tokenizer = Tokenizer(num_words=5000, split=' ')
tokenizer.fit_on_texts(news_df['text'].values)
X = tokenizer.texts_to_sequences(news_df['text'].values)
X = pad_sequences(X)
# 构建LSTM模型
model = Sequential()
model.add(Embedding(5000, 128, input_length=X.shape[1]))
model.add(LSTM(128, dropout=0.2, recurrent_dropout=0.2))
model.add(Dense(1, activation='sigmoid'))
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
# 训练模型
model.fit(X, news_df['label'].values, batch_size=32, epochs=10, validation_split=0.2)
# 以下是优化后的LSTM网络代码
model = Sequential()
model.add(Embedding(5000, 128, input_length=X.shape[1]))
model.add(LSTM(128, dropout=0.2, recurrent_dropout=0.2, return_sequences=True))
model.add(LSTM(64, dropout=0.2, recurrent_dropout=0.2))
model.add(Dense(1, activation='sigmoid'))
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
```
优化后的LSTM网络采用了两层LSTM层,第一层LSTM层的输出需要返回给第二层LSTM层进行处理。同时,第一层LSTM层的输出神经元数目为128,第二层LSTM层的输出神经元数目为64。这样做可以提高模型的准确率和泛化能力。
阅读全文