具体代码
时间: 2023-07-02 08:13:18 浏览: 71
数据容器通用操作的具体代码
这里提供一份使用Python和Keras实现LSTM和CGAN相结合生成音乐和弦的示例代码:
```python
# 导入相关库
from keras.models import Sequential, Model
from keras.layers import Dense, Dropout, Input, LSTM, Embedding, concatenate
from keras.layers.advanced_activations import LeakyReLU
from keras.optimizers import Adam
import numpy as np
# 定义LSTM模型
def create_lstm_model(n_notes, n_features):
model = Sequential()
model.add(LSTM(256, input_shape=(n_features, 1), return_sequences=True))
model.add(Dropout(0.3))
model.add(LSTM(512))
model.add(Dropout(0.3))
model.add(Dense(256))
model.add(LeakyReLU(alpha=0.2))
model.add(Dropout(0.3))
model.add(Dense(n_notes, activation='softmax'))
model.compile(loss='categorical_crossentropy', optimizer=Adam(lr=0.001))
return model
# 定义CGAN模型
def create_cgan_model(n_notes, n_features, latent_dim):
# 定义生成器
generator_input = Input(shape=(latent_dim,))
generator_x = Dense(256)(generator_input)
generator_x = LeakyReLU(alpha=0.2)(generator_x)
generator_x = Dropout(0.3)(generator_x)
generator_x = Dense(512)(generator_x)
generator_x = LeakyReLU(alpha=0.2)(generator_x)
generator_x = Dropout(0.3)(generator_x)
generator_x = Dense(n_features, activation='tanh')(generator_x)
generator = Model(generator_input, generator_x)
# 定义判别器
music_input = Input(shape=(n_features, 1))
music_x = LSTM(256)(music_input)
music_x = Dropout(0.3)(music_x)
music_x = Dense(512)(music_x)
music_x = LeakyReLU(alpha=0.2)(music_x)
music_x = Dropout(0.3)(music_x)
music_x = Dense(256)(music_x)
music_x = LeakyReLU(alpha=0.2)(music_x)
music_x = Dropout(0.3)(music_x)
music_output = Dense(1, activation='sigmoid')(music_x)
discriminator = Model(music_input, music_output)
# 将生成器和判别器组合起来
discriminator.trainable = False
gan_input = Input(shape=(latent_dim,))
gan_output = discriminator(generator(gan_input))
gan = Model(gan_input, gan_output)
gan.compile(loss='binary_crossentropy', optimizer=Adam(lr=0.001))
return generator, discriminator, gan
# 加载训练数据
def load_data():
# TODO:加载训练数据
return np.zeros((1, 100, 1)), np.zeros((1, 100, 1))
# 训练模型
def train():
# 加载训练数据
X, y = load_data()
n_notes, n_features = X.shape[1], X.shape[2]
latent_dim = 100
# 创建LSTM模型和CGAN模型
lstm_model = create_lstm_model(n_notes, n_features)
generator, discriminator, gan = create_cgan_model(n_notes, n_features, latent_dim)
# 训练模型
epochs = 1000
batch_size = 128
for epoch in range(epochs):
# 训练判别器
real_notes = np.expand_dims(X[np.random.randint(0, X.shape[0], size=batch_size)], axis=2)
fake_notes = generator.predict(np.random.normal(0, 1, size=(batch_size, latent_dim)))
X_discriminator = np.concatenate([real_notes, fake_notes])
y_discriminator = np.zeros((2 * batch_size, 1))
y_discriminator[:batch_size] = 1
y_discriminator[batch_size:] = 0
discriminator_loss = discriminator.train_on_batch(X_discriminator, y_discriminator)
# 训练生成器
X_generator = np.random.normal(0, 1, size=(batch_size, latent_dim))
y_generator = np.ones((batch_size, 1))
generator_loss = gan.train_on_batch(X_generator, y_generator)
# 每100轮输出一次损失值
if epoch % 100 == 0:
print(f"Epoch: {epoch}, Discriminator Loss: {discriminator_loss}, Generator Loss: {generator_loss}")
# 保存生成器模型
generator.save('generator.h5')
if __name__ == '__main__':
train()
```
注意:以上代码仅为示例代码,需要根据具体任务和数据进行适当修改。
阅读全文