self.height = [max_height] * total_row for i in range(total_row): self.height[i] = -1 for j in range(max_height): if values[i][j] != 0: self.height[i] = j

时间: 2023-06-18 20:07:56 浏览: 57
这段代码看起来是一个类的初始化函数,其中self.height是一个列表,用于存储每一行的最大高度。total_row表示总的行数,max_height表示每一行的最大高度,values是一个二维数组,存储了每一个格子的值。 在初始化函数中,首先将self.height列表初始化为长度为total_row,元素全为max_height的列表。然后对于每一行,遍历该行的每一个格子,如果该格子的值不为0,将该行的最大高度设置为该格子的高度j。 需要注意的是,这段代码并没有检查values数组的边界,如果values的行数或列数不足total_row或max_height,可能会导致数组越界问题。
相关问题

def add_logic(self,row,col,color): if self.direct == 0: if 0 < row < self.__n-1 : self.logic_board_state[row * 4 + col][0] = color self.logic_board_state[row * 4 + col - 4][1] = color elif row == 0: self.logic_board_state[col][0] = color elif row == self.__n-1 : self.logic_board_state[row*3+col][1] = color elif self.direct == 1: if 0 < col < self.__n-1 : self.logic_board_state[row*4 + col][2] = color self.logic_board_state[row*4 + col - 1][3] = color elif col == 0: self.logic_board_state[row*4][2] = color elif col == self.__n-1: self.logic_board_state[4*row + col - 1][3] = color

这段代码是一个名为 `add_logic` 的方法,用于向逻辑棋盘中添加棋子。方法接收三个参数 `row`、`col` 和 `color`,分别表示行、列和颜色。 首先,根据 `self.direct` 的值判断棋子的放置方向。如果 `self.direct` 等于 0,表示水平方向放置棋子;如果 `self.direct` 等于 1,表示垂直方向放置棋子。 接下来,根据棋子的放置方向和行列位置,更新逻辑棋盘状态。如果是水平方向,且行的范围在 1 到 `self.__n-2` 之间(不包括边界),则更新两个位置的状态。具体更新的位置可以通过计算得到,使用 `row * 4 + col` 计算出当前位置的索引。 如果是水平方向,且行等于 0,则只更新第一列的状态,即 `self.logic_board_state[col][0]`。 如果是水平方向,且行等于 `self.__n-1`,则只更新最后一列的状态,即 `self.logic_board_state[row*3+col][1]`。 如果是垂直方向,且列的范围在 1 到 `self.__n-2` 之间(不包括边界),则更新两个位置的状态。具体更新的位置可以通过计算得到,使用 `row*4 + col` 计算出当前位置的索引。 如果是垂直方向,且列等于 0,则只更新第一行的状态,即 `self.logic_board_state[row*4][2]`。 如果是垂直方向,且列等于 `self.__n-1`,则只更新最后一行的状态,即 `self.logic_board_state[4*row + col - 1][3]`。 通过这样的方式,将棋子的信息添加到逻辑棋盘状态中。

def __next_step(self, x, y): if not self.judge_colory: self.__history += 0 else: self.__history += 1 self.color = 1 if self.__history % 2 == 0 else 2 if self.start_ai_game: if self.ai_color == self.color: row,col = self.ai_stage(self.ai_game()[0],self.ai_game()[1]) else: col = round((x-self.__margin*2)/self.__cell_width) row = round((y-self.__margin*2)/self.__cell_width) stage_row = (y-self.__margin)-(self.__cell_width*row+self.__margin) stage_col = (x-self.__margin)-(self.__cell_width*col+self.__margin) if stage_col < stage_row: self.direct= 1 else: self.direct= 0 else: col = round((x - self.__margin * 2) / self.__cell_width) row = round((y - self.__margin * 2) / self.__cell_width) stage_row = (y - self.__margin) - (self.__cell_width * row + self.__margin) stage_col = (x - self.__margin) - (self.__cell_width * col + self.__margin) if stage_col < stage_row: self.direct = 1 else: self.direct= 0 if self.valide(row, col, self.direct): if self.__history % 4 == 0 or (self.__history + 2) % 4 == 0: self.__game_board.drew_turn(2) else: self.__game_board.drew_turn(1) self.add_logic(row, col, self.color) self.__game_board.draw_chess(row, col, self.color, self.direct) if self.judge_owner(row, col, self.color, self.direct): self.__game_board.drew_turn(self.judge_next(self.color)) for i in self.judge_owner(row, col, self.color, self.direct): x,y=self.draw_owner(i) self.__game_board.drew_owner(self.color, y, x) else: self.__game_board.drew_turn(self.color) self.judge_color(row, col, self.color, self.direct) print(self.logic_board_state) if 0 not in self.logic_board_owner: self.__game_board.pop_win(self.judge_winner())

这段代码是一个名为 `__next_step` 的方法。它接收两个参数 `x` 和 `y`,代表鼠标点击的坐标位置。 首先,根据 `self.judge_colory` 的值来判断是否需要更新 `self.__history`。如果 `self.judge_colory` 为假,则 `self.__history` 不变,否则将 `self.__history` 加 1。 接下来,根据 `self.__history` 的奇偶性来确定当前的颜色。如果 `self.__history` 是偶数,则 `self.color` 设置为 1,否则设置为 2。 如果 `self.start_ai_game` 为真,则进入 AI 对战模式。根据当前的颜色和 AI 的颜色判断是否轮到 AI 下棋。如果是,则调用 `self.ai_stage` 方法,传入当前棋盘状态和当前颜色,获取 AI 下棋的结果,并将结果赋值给 `row` 和 `col`。 如果不是 AI 下棋,即玩家下棋,则将鼠标点击位置转换为行和列的索引,并计算出相对于棋盘格子的位置。根据相对位置的大小,确定下棋方向,并将结果赋值给 `self.direct`。 接下来,通过调用 `self.valide` 方法判断当前位置是否可下棋。如果可下棋,则根据当前回合数判断应该绘制哪种颜色的标记,并调用相应的方法在游戏界面上绘制标记和棋子。 然后,通过调用 `self.judge_owner` 方法判断是否有棋子归属变更,并返回变更的位置。如果有变更,根据变更的位置绘制相应颜色的棋子。 接下来,通过调用 `self.judge_color` 方法更新逻辑棋盘的状态。 然后,打印出当前逻辑棋盘的状态。 最后,判断逻辑棋盘是否已满。如果已满,则调用 `self.judge_winner` 方法判断胜利方,并在游戏界面上弹出胜利提示。

相关推荐

class AbstractGreedyAndPrune(): def __init__(self, aoi: AoI, uavs_tours: dict, max_rounds: int, debug: bool = True): self.aoi = aoi self.max_rounds = max_rounds self.debug = debug self.graph = aoi.graph self.nnodes = self.aoi.n_targets self.uavs = list(uavs_tours.keys()) self.nuavs = len(self.uavs) self.uavs_tours = {i: uavs_tours[self.uavs[i]] for i in range(self.nuavs)} self.__check_depots() self.reachable_points = self.__reachable_points() def __pruning(self, mr_solution: MultiRoundSolution) -> MultiRoundSolution: return utility.pruning_multiroundsolution(mr_solution) def solution(self) -> MultiRoundSolution: mrs_builder = MultiRoundSolutionBuilder(self.aoi) for uav in self.uavs: mrs_builder.add_drone(uav) residual_ntours_to_assign = {i : self.max_rounds for i in range(self.nuavs)} tour_to_assign = self.max_rounds * self.nuavs visited_points = set() while not self.greedy_stop_condition(visited_points, tour_to_assign): itd_uav, ind_tour = self.local_optimal_choice(visited_points, residual_ntours_to_assign) residual_ntours_to_assign[itd_uav] -= 1 tour_to_assign -= 1 opt_tour = self.uavs_tours[itd_uav][ind_tour] visited_points |= set(opt_tour.targets_indexes) # update visited points mrs_builder.append_tour(self.uavs[itd_uav], opt_tour) return self.__pruning(mrs_builder.build()) class CumulativeGreedyCoverage(AbstractGreedyAndPrune): choice_dict = {} for ind_uav in range(self.nuavs): uav_residual_rounds = residual_ntours_to_assign[ind_uav] if uav_residual_rounds > 0: uav_tours = self.uavs_tours[ind_uav] for ind_tour in range(len(uav_tours)): tour = uav_tours[ind_tour] quality_tour = self.evaluate_tour(tour, uav_residual_rounds, visited_points) choice_dict[quality_tour] = (ind_uav, ind_tour) best_value = max(choice_dict, key=int) return choice_dict[best_value] def evaluate_tour(self, tour : Tour, round_count : int, visited_points : set): new_points = (set(tour.targets_indexes) - visited_points) return round_count * len(new_points) 如何改写上述程序,使其能返回所有已经探索过的目标点visited_points的数量,请用代码表示

给以下代码写注释,要求每行写一句:class CosineAnnealingWarmbootingLR: # cawb learning rate scheduler: given the warm booting steps, calculate the learning rate automatically def __init__(self, optimizer, epochs=0, eta_min=0.05, steps=[], step_scale=0.8, lf=None, batchs=0, warmup_epoch=0, epoch_scale=1.0): self.warmup_iters = batchs * warmup_epoch self.optimizer = optimizer self.eta_min = eta_min self.iters = -1 self.iters_batch = -1 self.base_lr = [group['lr'] for group in optimizer.param_groups] self.step_scale = step_scale steps.sort() self.steps = [warmup_epoch] + [i for i in steps if (i < epochs and i > warmup_epoch)] + [epochs] self.gap = 0 self.last_epoch = 0 self.lf = lf self.epoch_scale = epoch_scale # Initialize epochs and base learning rates for group in optimizer.param_groups: group.setdefault('initial_lr', group['lr']) def step(self, external_iter = None): self.iters += 1 if external_iter is not None: self.iters = external_iter # cos warm boot policy iters = self.iters + self.last_epoch scale = 1.0 for i in range(len(self.steps)-1): if (iters <= self.steps[i+1]): self.gap = self.steps[i+1] - self.steps[i] iters = iters - self.steps[i] if i != len(self.steps)-2: self.gap += self.epoch_scale break scale *= self.step_scale if self.lf is None: for group, lr in zip(self.optimizer.param_groups, self.base_lr): group['lr'] = scale * lr * ((((1 + math.cos(iters * math.pi / self.gap)) / 2) ** 1.0) * (1.0 - self.eta_min) + self.eta_min) else: for group, lr in zip(self.optimizer.param_groups, self.base_lr): group['lr'] = scale * lr * self.lf(iters, self.gap) return self.optimizer.param_groups[0]['lr'] def step_batch(self): self.iters_batch += 1 if self.iters_batch < self.warmup_iters: rate = self.iters_batch / self.warmup_iters for group, lr in zip(self.optimizer.param_groups, self.base_lr): group['lr'] = lr * rate return self.optimizer.param_groups[0]['lr'] else: return None

程序执行提示AttributeError: 'point_cloud_generator' object has no attribute 'widthself',优化程序class point_cloud_generator(): def __init__(self, rgb_file, depth_file, save_ply, camera_intrinsics=[784.0, 779.0, 649.0, 405.0]): self.rgb_file = rgb_file self.depth_file = depth_file self.save_ply = save_ply self.rgb = cv2.imread(rgb_file) self.depth = cv2.imread(self.depth_file, -1) print("your depth image shape is:", self.depth.shape) self.width = self.rgb.shape[1] self.height = self.rgb.shape[0] self.camera_intrinsics = camera_intrinsics self.depth_scale = 1000 def compute(self): t1 = time.time() depth = np.asarray(self.depth, dtype=np.uint16).T # depth[depth==65535]=0 self.Z = depth / self.depth_scale fx, fy, cx, cy = self.camera_intrinsics X = np.zeros((self.width, self.height)) Y = np.zeros((self.width, self.height)) for i in range(self.width): X[i, :] = np.full(X.shape[1], i) self.X = ((X - cx / 2) * self.Z) / fx for i in range(self.height): Y[:, i] = np.full(Y.shape[0], i) self.Y = ((Y - cy / 2) * self.Z) / fy data_ply = np.zeros((6, self.width * self.height)) data_ply[0] = self.X.T.reshape(-1)[:self.widthself.height] data_ply[1] = -self.Y.T.reshape(-1)[:self.widthself.height] data_ply[2] = -self.Z.T.reshape(-1)[:self.widthself.height] img = np.array(self.rgb, dtype=np.uint8) data_ply[3] = img[:, :, 0:1].reshape(-1)[:self.widthself.height] data_ply[4] = img[:, :, 1:2].reshape(-1)[:self.widthself.height] data_ply[5] = img[:, :, 2:3].reshape(-1)[:self.widthself.height] self.data_ply = data_ply t2 = time.time() print('calcualte 3d point cloud Done.', t2 - t1)

class PSO_VRP: def __init__(self, num_particles, num_iterations, num_customers, max_capacity, max_distance, distances, demands): self.num_particles = num_particles self.num_iterations = num_iterations self.num_customers = num_customers self.max_capacity = max_capacity self.max_distance = max_distance self.distances = distances self.demands = demands self.global_best_fitness = float('inf') self.global_best_position = [0] * num_customers self.particles = [] def initialize_particles(self): for _ in range(self.num_particles): particle = Particle(self.num_customers, self.max_capacity, self.max_distance) self.particles.append(particle) def update_particles(self): for particle in self.particles: for i in range(len(particle.position)): r1 = random.random() r2 = random.random() particle.velocity[i] = 0.5 * particle.velocity[i] + 2 * r1 * (particle.best_position[i] - particle.position[i]) + 2 * r2 * (self.global_best_position[i] - particle.position[i]) particle.velocity[i] = int(particle.velocity[i]) if particle.velocity[i] < 0: particle.velocity[i] = 0 elif particle.velocity[i] > self.num_customers - 1: particle.velocity[i] = self.num_customers - 1 particle.position = [(particle.position[i] + particle.velocity[i]) % (self.num_customers + 1) for i in range(len(particle.position))] def update_global_best(self): for particle in self.particles: if particle.best_fitness < self.global_best_fitness: self.global_best_fitness = particle.best_fitness self.global_best_position = particle.best_position.copy() def solve(self): self.initialize_particles() for _ in range(self.num_iterations): for particle in self.particles: particle.evaluate_fitness(self.distances, self.demands) self.update_global_best() self.update_particles() return self.global_best_position, self.global_best_fitness添加注释

class SpiralIterator: def init(self, source, x=810, y=500, length=None): self.source = source self.row = np.shape(self.source)[0]#第一个元素是行数 self.col = np.shape(self.source)[1]#第二个元素是列数 if length: self.length = min(length, np.size(self.source)) else: self.length = np.size(self.source) if x: self.x = x else: self.x = self.row // 2 if y: self.y = y else: self.y = self.col // 2 self.i = self.x self.j = self.y self.iteSize = 0 geo_transform = dsm_data.GetGeoTransform() self.x_origin = geo_transform[0] self.y_origin = geo_transform[3] self.pixel_width = geo_transform[1] self.pixel_height = geo_transform[5] def hasNext(self): return self.iteSize < self.length # 不能取更多值了 def get(self): if self.hasNext(): # 还能再取一个值 # 先记录当前坐标的值 —— 准备返回 i = self.i j = self.j val = self.source[i][j] # 计算下一个值的坐标 relI = self.i - self.x # 相对坐标 relJ = self.j - self.y # 相对坐标 if relJ > 0 and abs(relI) < relJ: self.i -= 1 # 上 elif relI < 0 and relJ > relI: self.j -= 1 # 左 elif relJ < 0 and abs(relJ) > relI: self.i += 1 # 下 elif relI >= 0 and relI >= relJ: self.j += 1 # 右 #判断索引是否在矩阵内 x = self.x_origin + (j + 0.5) * self.pixel_width y = self.y_origin + (i + 0.5) * self.pixel_height z = val self.iteSize += 1 return x, y, z dsm_path = 'C:\sanwei\jianmo\Productions\Production_2\Production_2_DSM_part_2_2.tif' dsm_data = gdal.Open(dsm_path) dsm_array = dsm_data.ReadAsArray() spiral_iterator = SpiralIterator(dsm_array,x=810,y=500) while spiral_iterator.hasNext(): x, y, z = spiral_iterator.get() print(f'Value at ({x},{y}):{z}')这段代码怎么改可以将地面点坐标反算其原始航片对应的像素行列号

最新推荐

recommend-type

服务器虚拟化部署方案.doc

服务器、电脑、
recommend-type

北京市东城区人民法院服务器项目.doc

服务器、电脑、
recommend-type

求集合数据的均方差iction-mast开发笔记

求集合数据的均方差
recommend-type

Wom6.3Wom6.3Wom6.3

Wom6.3Wom6.3Wom6.3
recommend-type

html网页版python语言pytorch框架的图像分类西瓜是否腐烂识别-含逐行注释和说明文档-不含图片数据集

本代码是基于python pytorch环境安装的cnn深度学习代码。 下载本代码后,有个环境安装的requirement.txt文本 运行环境推荐安装anaconda,然后再里面推荐安装python3.7或3.8的版本,pytorch推荐安装1.7.1或1.8.1版本。 首先是代码的整体介绍 总共是3个py文件,十分的简便 且代码里面的每一行都是含有中文注释的,小白也能看懂代码 然后是关于数据集的介绍。 本代码是不含数据集图片的,下载本代码后需要自行搜集图片放到对应的文件夹下即可 在数据集文件夹下是我们的各个类别,这个类别不是固定的,可自行创建文件夹增加分类数据集 需要我们往每个文件夹下搜集来图片放到对应文件夹下,每个对应的文件夹里面也有一张提示图,提示图片放的位置 然后我们需要将搜集来的图片,直接放到对应的文件夹下,就可以对代码进行训练了。 运行01数据集文本生成制作.py,是将数据集文件夹下的图片路径和对应的标签生成txt格式,划分了训练集和验证集 运行02深度学习模型训练.py,会自动读取txt文本内的内容进行训练 运行03html_server.py,生成网页的url了 打开
recommend-type

计算机基础知识试题与解答

"计算机基础知识试题及答案-(1).doc" 这篇文档包含了计算机基础知识的多项选择题,涵盖了计算机历史、操作系统、计算机分类、电子器件、计算机系统组成、软件类型、计算机语言、运算速度度量单位、数据存储单位、进制转换以及输入/输出设备等多个方面。 1. 世界上第一台电子数字计算机名为ENIAC(电子数字积分计算器),这是计算机发展史上的一个重要里程碑。 2. 操作系统的作用是控制和管理系统资源的使用,它负责管理计算机硬件和软件资源,提供用户界面,使用户能够高效地使用计算机。 3. 个人计算机(PC)属于微型计算机类别,适合个人使用,具有较高的性价比和灵活性。 4. 当前制造计算机普遍采用的电子器件是超大规模集成电路(VLSI),这使得计算机的处理能力和集成度大大提高。 5. 完整的计算机系统由硬件系统和软件系统两部分组成,硬件包括计算机硬件设备,软件则包括系统软件和应用软件。 6. 计算机软件不仅指计算机程序,还包括相关的文档、数据和程序设计语言。 7. 软件系统通常分为系统软件和应用软件,系统软件如操作系统,应用软件则是用户用于特定任务的软件。 8. 机器语言是计算机可以直接执行的语言,不需要编译,因为它直接对应于硬件指令集。 9. 微机的性能主要由CPU决定,CPU的性能指标包括时钟频率、架构、核心数量等。 10. 运算器是计算机中的一个重要组成部分,主要负责进行算术和逻辑运算。 11. MIPS(Millions of Instructions Per Second)是衡量计算机每秒执行指令数的单位,用于描述计算机的运算速度。 12. 计算机存储数据的最小单位是位(比特,bit),是二进制的基本单位。 13. 一个字节由8个二进制位组成,是计算机中表示基本信息的最小单位。 14. 1MB(兆字节)等于1,048,576字节,这是常见的内存和存储容量单位。 15. 八进制数的范围是0-7,因此317是一个可能的八进制数。 16. 与十进制36.875等值的二进制数是100100.111,其中整数部分36转换为二进制为100100,小数部分0.875转换为二进制为0.111。 17. 逻辑运算中,0+1应该等于1,但选项C错误地给出了0+1=0。 18. 磁盘是一种外存储设备,用于长期存储大量数据,既可读也可写。 这些题目旨在帮助学习者巩固和检验计算机基础知识的理解,涵盖的领域广泛,对于初学者或需要复习基础知识的人来说很有价值。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【进阶】音频处理基础:使用Librosa

![【进阶】音频处理基础:使用Librosa](https://picx.zhimg.com/80/v2-a39e5c9bff1d920097341591ca8a2dfe_1440w.webp?source=1def8aca) # 2.1 Librosa库的安装和导入 Librosa库是一个用于音频处理的Python库。要安装Librosa库,请在命令行中输入以下命令: ``` pip install librosa ``` 安装完成后,可以通过以下方式导入Librosa库: ```python import librosa ``` 导入Librosa库后,就可以使用其提供的各种函数
recommend-type

设置ansible 开机自启

Ansible是一个强大的自动化运维工具,它可以用来配置和管理服务器。如果你想要在服务器启动时自动运行Ansible任务,通常会涉及到配置服务或守护进程。以下是使用Ansible设置开机自启的基本步骤: 1. **在主机上安装必要的软件**: 首先确保目标服务器上已经安装了Ansible和SSH(因为Ansible通常是通过SSH执行操作的)。如果需要,可以通过包管理器如apt、yum或zypper安装它们。 2. **编写Ansible playbook**: 创建一个YAML格式的playbook,其中包含`service`模块来管理服务。例如,你可以创建一个名为`setu
recommend-type

计算机基础知识试题与解析

"计算机基础知识试题及答案(二).doc" 这篇文档包含了计算机基础知识的多项选择题,涵盖了操作系统、硬件、数据表示、存储器、程序、病毒、计算机分类、语言等多个方面的知识。 1. 计算机系统由硬件系统和软件系统两部分组成,选项C正确。硬件包括计算机及其外部设备,而软件包括系统软件和应用软件。 2. 十六进制1000转换为十进制是4096,因此选项A正确。十六进制的1000相当于1*16^3 = 4096。 3. ENTER键是回车换行键,用于确认输入或换行,选项B正确。 4. DRAM(Dynamic Random Access Memory)是动态随机存取存储器,选项B正确,它需要周期性刷新来保持数据。 5. Bit是二进制位的简称,是计算机中数据的最小单位,选项A正确。 6. 汉字国标码GB2312-80规定每个汉字用两个字节表示,选项B正确。 7. 微机系统的开机顺序通常是先打开外部设备(如显示器、打印机等),再开启主机,选项D正确。 8. 使用高级语言编写的程序称为源程序,需要经过编译或解释才能执行,选项A正确。 9. 微机病毒是指人为设计的、具有破坏性的小程序,通常通过网络传播,选项D正确。 10. 运算器、控制器及内存的总称是CPU(Central Processing Unit),选项A正确。 11. U盘作为外存储器,断电后存储的信息不会丢失,选项A正确。 12. 财务管理软件属于应用软件,是为特定应用而开发的,选项D正确。 13. 计算机网络的最大好处是实现资源共享,选项C正确。 14. 个人计算机属于微机,选项D正确。 15. 微机唯一能直接识别和处理的语言是机器语言,它是计算机硬件可以直接执行的指令集,选项D正确。 16. 断电会丢失原存信息的存储器是半导体RAM(Random Access Memory),选项A正确。 17. 硬盘连同驱动器是一种外存储器,用于长期存储大量数据,选项B正确。 18. 在内存中,每个基本单位的唯一序号称为地址,选项B正确。 以上是对文档部分内容的详细解释,这些知识对于理解和操作计算机系统至关重要。