输入一行字符,统计单词个数

时间: 2023-08-21 09:07:38 浏览: 60
以下是 Python 代码实现: ```python s = input("请输入一行字符:") count = 0 for i in s.split(): count += 1 print("单词个数为:", count) ``` 首先,我们使用 `input` 函数获取用户输入的一行字符,并将其赋值给变量 `s`。 然后,我们定义一个变量 `count`,初始值为 0,用于统计单词个数。 接着,我们使用 `split` 方法将字符串 `s` 按空格分割成一个列表,并使用 `for` 循环遍历这个列表。在循环中,每遇到一个单词,就将 `count` 的值加 1。 最后,我们输出统计结果,即单词个数。
相关问题

利用c语言,输入一行字符,统计单词个数

以下是一个简单的示例代码,它使用空格作为单词分隔符,统计输入行中的单词数: ```c #include <stdio.h> int main() { char str[1000]; int wordCount = 0, i; printf("请输入一行字符:"); gets(str); // 统计单词数 for (i = 0; str[i] != '\0'; i++) { if (str[i] == ' ') { wordCount++; } } // 输出结果 printf("输入行中的单词数为:%d\n", wordCount + 1); return 0; } ``` 这个程序中,我们首先使用 `gets()` 函数从标准输入中读取一行字符,并存储在 `str` 数组中。然后,我们遍历 `str` 数组中的每个字符,如果发现一个空格,则将单词计数器 `wordCount` 加一。最后,我们输出 `wordCount+1` 的值,因为我们统计的是单词数,而不是空格数,而单词数比空格数多一个。

输入一行字符,统计其中有多少个单词

以下是C语言统计单词数的代码示例: ```c #include <stdio.h> #include <string.h> void main() { int i, j, count = 1; // 从1开始算,第一个单词算一个 char str[100]; printf("请输入一串字符:"); gets(str); j = strlen(str); for (i = 0; str[i] != '\0'; i++) { if (str[i] == ' ' && str[i + 1] != ' ') count++; } printf("这串字符有%d个单词", count); } ``` 该代码通过循环遍历输入的字符串,判断空格的位置来统计单词数。需要注意的是,正常情况下第一个单词是没有空格的,因此从1开始算,第一个单词算一个。 --相关问题--: 1. 如何在Python中统计单词数? 2. 如何判断一个字符是否为空格? 3. 如何在C语言中输入字符串?

相关推荐

最新推荐

recommend-type

Python实现统计英文单词个数及字符串分割代码

在Python编程语言中,统计英文单词个数和字符串分割是常见的文本处理任务。这里我们将详细探讨这两种操作的实现方法。 首先,让我们来看一下如何进行字符串分割。在Python中,`str.split()` 方法是用于将字符串分割...
recommend-type

C语言中使用lex统计文本文件字符数

在这个特定的案例中,我们使用lex来统计文本文件中的字符数、单词数和行数。 首先, `%{ %}` 之间的部分是用户定义的C代码区域。在这个例子中,定义了三个全局变量:`char_count`用于记录字符总数,`word_count`...
recommend-type

C语言统计一篇英文短文中单词的个数实例代码

该代码的优点是简单易懂,易于理解和修改,可以作为统计单词个数的参考代码。同时,该代码也可以作为C语言编程的入门级代码,帮助初学者更好地理解C语言的基本语法和编程思想。 需要注意的是,该代码使用了gets函数...
recommend-type

Java实现读取键盘输入保存到txt文件,再统计并输出每个单词出现次数的方法

Java实现读取键盘输入保存到txt文件,再统计并输出每个单词出现次数的方法 本文主要介绍了Java实现读取键盘输入保存到txt文件,再统计并输出每个单词出现次数的方法。该方法涉及到Java文件I/O操作、字符串遍历和运算...
recommend-type

一行文本的字母和单词的计数

标题 "一行文本的字母和单词的计数" 描述了一个简单的C++程序,该程序能够读取一行文本,然后计算出这行文本中单词的总数以及每个字母出现的频率。程序假设文本仅由字符、空格、逗号和句号组成,因此在处理时并未...
recommend-type

安科瑞ACR网络电力仪表详细规格与安装指南

安科瑞ACR系列网络多功能电力仪表是一款专为电力系统、工矿企业、公用设施和智能大厦设计的智能电表。这款仪表集成了全面的电力参数测量功能,包括单相或三相的电流、电压、有功功率、无功功率、视在功率、频率和功率因数的实时监测。它还具备先进的电能计量和考核管理能力,例如四象限电能计量(能够区分有功和无功电量)、分时电能统计(支持峰谷平电价的计算)、最大需量记录以及详尽的12个月电能统计数据,便于对用电情况进行精细管理和分析。 用户手册详细介绍了产品的安装使用方法,确保用户能够正确安装和连接仪表。安装步骤和接线部分可能会涉及安全注意事项、仪表与电网的连接方式、输入输出端口的识别以及不同环境下的安装适应性。此外,手册中还包含了产品的技术参数,这些参数可能包括精度等级、测量范围、工作电压范围、通信接口类型(如RS-485、以太网等)、以及兼容的操作系统或通信协议。 购买前,用户应通过查询当地代理商了解产品的最新规格和技术更新,以确保获取到最准确的产品信息。版权申明指出,未经安科瑞电气股份有限公司的书面许可,手册内容不能被擅自摘抄或复制,否则将承担相应的法律责任。 该说明书的结构严谨,内容覆盖了从产品概述、详细规格、技术参数解读到实际操作的各个环节,旨在帮助用户高效、安全地使用ACR系列网络电力仪表,并充分利用其功能进行电力系统的精细化管理。对于从事电力工程、能源管理或相关领域工作的专业人士来说,这份说明书是不可或缺的参考工具。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

步进电机单片机控制软件设计指南:架构、算法和优化,打造高效电机控制系统

![步进电机单片机控制软件设计指南:架构、算法和优化,打造高效电机控制系统](http://www.jucreate.com//u/cms/www//202307/261112163nit.png) # 1. 步进电机单片机控制系统概述 步进电机单片机控制系统是一种利用单片机控制步进电机运行的系统,广泛应用于工业自动化、医疗设备和机器人等领域。步进电机具有精度高、响应快、控制灵活等优点,而单片机则具有成本低、体积小、功能强大的特点。步进电机单片机控制系统通过单片机发出控制信号,驱动步进电机按照预定的步长和方向运动,实现精密的定位和控制。 # 2. 步进电机控制算法 步进电机控制算法是步进
recommend-type

-lmsc collect2: error: ld returned 1 exit status

这个错误信息通常出现在Linux系统中,当你试图编译链接程序时,特别是使用GCC(GNU Compiler Collection)工具链。`-lmsc collect2: error: ld returned 1 exit status` 的含义是,在链接阶段(`ld`)遇到了问题,返回了非零退出状态(1),这表明链接过程失败。 其中: - `-lmsc` 指的是链接库(libraries)的一部分,可能是对某个名为 "mssc" 的动态链接库的引用。如果该库不存在或者路径配置错误,就会引发这个问题。 - `collect2` 是链接器(collector)的一部分,它负责将编译后的目标文件
recommend-type

西门子全集成自动化解决方案在风电行业的应用与优势

"西门子全集成自动化在风电行业的应用" 西门子全集成自动化(TIA, Totally Integrated Automation)系统是西门子为风电行业提供的一种先进的自动化解决方案。该系统在风电行业中的应用旨在提高风力发电机组和风力发电场的效率、可用性和可靠性,同时降低总体拥有成本。随着全球对清洁能源的需求日益增长,风能作为一种无尽的可再生能源,其重要性不言而喻。根据描述,到2017年,全球风能装机容量预计将有显著增长,这为相关制造商和建筑商带来了巨大的机遇,也加剧了市场竞争。 全集成自动化的核心是SIMATIC系列控制器,如SIMATIC Microbox,它专门设计用于风力发电的各种控制任务。SIMATIC不仅满足了机械指令的安全要求,还能灵活适应风力发电行业的不断变化的需求。这种自动化解决方案提供了一个开放的系统架构,适应国际市场的多元化需求,确保最大开放性,同时保护制造商的专有知识。 在风电设备的功能层面,全集成自动化涵盖了多个关键领域: - 发电机组控制:确保发电机组高效运行,优化风能转化为电能的过程。 - 分布式智能:利用分散式控制系统提升整体性能,减少中央系统的负担。 - 人机界面(HMI):提供直观的操作和监控界面,简化人员操作。 - 通信:实现风力发电机组间的通信,协调整个风力发电场的工作。 - 风力发电场管理:自动化管理整个风场,提高运营效率。 - 诊断和远程监视:实时监控设备状态,及时进行故障诊断和维护。 - 状态监测:通过高级传感器技术持续评估设备健康状况。 - 桨距控制:根据风速调整风轮叶片角度,以优化能量捕获。 - 偏航系统控制:确保机舱随风向调整,最大化风能利用率。 - 电力配送:高效分配生成的电能,确保电网稳定。 - 液压控制:精确控制液压系统,保障设备正常运行。 此外,安全功能的集成,如安全逻辑控制和数据安全性,确保了设备在运行过程中的安全。系统的高质量和坚固性使其能够在恶劣的户外环境中稳定工作。西门子还提供工程组态软件、维修、支持和培训服务,确保用户能够充分利用全集成自动化的优势。 通过全集成自动化,西门子提供了一种系统化的方法来提升整个风电价值链的生产力。统一的工程环境使得设计、配置和调试更为便捷,减少了时间和成本。西门子全集成自动化解决方案的全面性和灵活性,使其成为风电行业实现长期成功的关键因素。